Browse > Article
http://dx.doi.org/10.4014/jmb.2005.05030

Characterization of Endolysin LysECP26 Derived from rV5-Like Phage vB_EcoM-ECP26 for Inactivation of Escherichia coli O157:H7  

Park, Do-Won (Department of Food Science and Biotechnology, Gachon University)
Park, Jong-Hyun (Department of Food Science and Biotechnology, Gachon University)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.10, 2020 , pp. 1552-1558 More about this Journal
Abstract
With an increase in the consumption of non-heated fresh food, foodborne shiga toxin-producing Escherichia coli (STEC) has emerged as one of the most problematic pathogens worldwide. Endolysin, a bacteriophage-derived lysis protein, is able to lyse the target bacteria without any special resistance, and thus has been garnering interest as a powerful antimicrobial agent. In this study, rV5-like phage endolysin targeting E. coli O157:H7, named as LysECP26, was identified and purified. This endolysin had a lysozyme-like catalytic domain, but differed markedly from the sequence of lambda phage endolysin. LysECP26 exhibited strong activity with a broad lytic spectrum against various gram-negative strains (29/29) and was relatively stable at a broad temperature range (4℃-55℃). The optimum temperature and pH ranges of LysECP26 were identified at 37℃-42℃ and pH 7-8, respectively. NaCl supplementation did not affect the lytic activity. Although LysECP26 was limited in that it could not pass the outer membrane, E. coli O157: H7 could be effectively controlled by adding ethylenediaminetetraacetic acid (EDTA) and citric acid (1.44 and 1.14 log CFU/ml) within 30 min. Therefore, LysECP26 may serve as an effective biocontrol agent for gram-negative pathogens, including E. coli O157:H7.
Keywords
E. coli O157:H7; rV5-like phage; endolysin; outer membrane permeabilizers (OMPs);
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Shabbir MAB, Hao H, Shabbir MZ, Wu Q, Sattar A, Yuan Z. 2016. Bacteria vs. bacteriophages: parallel evolution of immune arsenals. Front. Microbiol. 7: 1292-1292.
2 Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, et al. 2012. Endolysins as antimicrobials. Adv. Virus Res. 83: 299-365.   DOI
3 Oliveira H, Thiagarajan V, Walmagh M, Sillankorva S, Lavigne R, Neves-Petersen MT, et al. 2014. A thermostable Salmonella phage endolysin, Lys68, with broad bactericidal properties against gram-negative pathogens in presence of weak acids. PLoS One 9: e108376.   DOI
4 Park DW, Lim GY, Lee YD, Park JH. 2020. Characteristics of lytic phage vB_EcoM-ECP26 and reduction of shiga-toxin producing Escherichia coli on produce romaine. Appl. Biol. Chem. 63: 19.   DOI
5 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.   DOI
6 Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. 2020. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 48: D265-D268.
7 Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol. Syst. Biol. 7: 539-539.   DOI
8 Dumon-Seignovert L, Cariot G, Vuillard L. 2004. The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Exp. Purif. 37: 203-206.   DOI
9 Wu M, Hu K, Xie Y, Liu Y, Mu D, Guo H, et al. 2018. A novel phage PD-6A3, and its endolysin Ply6A3, with extended lytic activity against Acinetobacter baumannii. Front. Microbiol. 9: 3302.   DOI
10 Lim JA, Shin H, Kang DH, Ryu S. 2012. Characterization of endolysin from a Salmonella Typhimurium-infecting bacteriophage SPN1S. Res. Microbiol. 163: 233-241.   DOI
11 Guo M, Feng C, Ren J, Zhuang X, Zhang Y, Zhu Y, et al. 2017. A novel antimicrobial endolysin, LysPA26, against Pseudomonas aeruginosa. Front. Microbiol. 8: 293.
12 Yu JH, Lim JA, Chang HJ, Park JH. 2019. Characteristics and lytic activity of phage-derived peptidoglycan hydrolase, LysSAP8, as a potent alternative biocontrol agent for Staphylococcus aureus. J. Microbiol. Biotechnol. 29: 1916-1924.   DOI
13 Lim JA, Shin H, Heu S, Ryu S. 2014. Exogenous lytic activity of SPN9CC endolysin against gram-negative bacteria. J. Microbiol. Biotechnol. 24: 803-811.   DOI
14 Schmelcher M, Donovan DM, Loessner MJ. 2012. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 7: 1147-1171.   DOI
15 Briers Y, Lavigne R, Volckaert G, Hertveldt K. 2007. A standardized approach for accurate quantification of murein hydrolase activity in high-throughput assays. J. Biochem. Biophys. Methods 70: 531-533.   DOI
16 Tsugita A, Inouye M. 1968. Purification of bacteriophage T4 lysozyme. J. Biol. Chem. 243: 391-397.   DOI
17 Briers Y, Lavigne R. 2015. Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria. Future Microbiol. 10: 377-390.   DOI
18 Heimbach J, Rieth S, Mohamedshah F, Slesinski R, Samuel-Fernando P, Sheehan T, et al. 2000. Safety assessment of iron EDTA [sodium iron (Fe3+) ethylenediaminetetraacetic acid]: summary of toxicological, fortification and exposure data. Food Chem. Toxicol. 38: 99-111.
19 Lu HJ, Breidt F, Jr., Perez-Diaz IM, Osborne JA. 2011. Antimicrobial effects of weak acids on the survival of Escherichia coli O157:H7 under anaerobic conditions. J. Food Prot. 74: 893-898.   DOI
20 Alakomi HL, Skytta E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander IM. 2000. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol. 66: 2001-2005.   DOI
21 Hyldgaard M, Mygind T, Meyer RL. 2012. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 3: 12.   DOI
22 Diez-Martinez R, de Paz H, Bustamante N, Garcia E, Menendez M, Garcia P. 2013. Improving the lethal effect of Cpl-7, a Pneumococcal phage lysozyme with broad bactericidal activity, by inverting the net charge of its cell wall-binding module. Antimicrob. Agents Chemother. 57: 5355-5365.   DOI
23 Ferguson S, Roberts C, Handy E, Sharma M. 2013. Lytic bacteriophages reduce Escherichia coli O157: H7 on fresh cut lettuce introduced through cross-contamination. Bacteriophage 3: e24323-e24323.   DOI
24 Oliveira H, Vilas Boas D, Mesnage S, Kluskens LD, Lavigne R, Sillankorva S, et al. 2016. Structural and enzymatic characterization of ABgp46, a novel phage endolysin with broad anti-gram-negative bacterial activity. Front. Microbiol. 7: 208.
25 Conway T, Krogfelt KA, Cohen PS. 2004. The life of commensal Escherichia coli in the mammalian intestine. EcoSal Plus 1. doi: 10.1128/ecosalplus.8.3.1.2.
26 Hunt JM. 2010. Shiga toxin-producing Escherichia coli (STEC). Clin. Lab. Med. 30: 21-45.   DOI
27 Yang SC, Lin CH, Aljuffali IA, Fang JY. 2017. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch. Microbiol. 199: 811-825.   DOI
28 Pirnay JP, Verbeken G, Ceyssens PJ, Huys I, De Vos D, Ameloot C, et al. 2018. The magistral phage. Viruses 10: 64.   DOI
29 Lin DM, Koskella B, Lin HC. 2017. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther. 8: 162-173.   DOI
30 Viazis S, Akhtar M, Feirtag J, Brabban AD, Diez-Gonzalez F. 2011. Isolation and characterization of lytic bacteriophages against enterohaemorrhagic Escherichia coli. J. Appl. Microbiol. 110: 1323-1331.   DOI
31 McLean SK, Dunn LA, Palombo EA. 2013. Phage inhibition of Escherichia coli in ultrahigh-temperature-treated and raw milk. Foodborne Pathog. Dis. 10: 956-962.   DOI
32 Magnone JP, Marek PJ, Sulakvelidze A, Senecal AG. 2013. Additive approach for inactivation of Escherichia coli O157:H7, Salmonella, and Shigella spp. on contaminated fresh fruits and vegetables using bacteriophage cocktail and produce wash. J. Food Prot. 76: 1336-1341.   DOI
33 Kropinski AM, Waddell T, Meng J, Franklin K, Ackermann H-W, Ahmed R, et al. 2013. The host-range, genomics and proteomics of Escherichia coli O157:H7 bacteriophage rV5. Virol. J. 10: 76-76.   DOI
34 Truncaite L, Simoliunas E, Zajanckauskaite A, Kaliniene L, Mankeviciute R, Staniulis J, et al. 2012. Bacteriophage vB_EcoM_FV3: a new member of "rV5-like viruses". Arch. Virol. 157: 2431-2435.   DOI
35 Kim M, Heu S, Ryu S. 2014. Complete genome sequence of enterobacteria phage 4MG, a new member of the subgroup "PVP-SE1-like phage" of the "rV5-like viruses". Arch. Virol. 159: 3137-3140.   DOI
36 Schmelcher M, Loessner MJ. 2016. Bacteriophage endolysins: applications for food safety. Curr. Opin. Biotechnol. 37: 76-87.   DOI
37 Korf IHE, Meier-Kolthoff JP, Adriaenssens EM, Kropinski AM, Nimtz M, Rohde M, et al. 2019. Still something to discover: novel insights into Escherichia coli phage diversity and taxonomy. Viruses 11: 454.   DOI