Amid concentrating on inviting foreign students in the aspect of securing talents as well as advanced educational service industry in the world, the number of foreign students in Korea exceeded over 90,000 in 2015, increased to 104,262 anticipating further increase according to National Statistical Office. The government tried to expand the dormitory supply to the foreign students upon the discretion that short of the basic infrastructure in the universities such as quantitative shortage and facilities of the dormitories limited to lure the foreign students, despite the will of inviting more foreign students by the government, however, the rate of foreign students' staying in the dormitories was low with 36.0% nationwide in 2016, reflecting the difficulties of residence for the foreign students in Metropolitan areas. Hence, this study is to suggest the alternative potential as the cooperative housing for the foreign students with the expanded concept and its foundation methods, upon reviewing the concept and trend of the common dormitory such as universities-cooperative housing with the initiative of public institutions and the common dormitories for the Korean students studying in Seoul, and analyzing the university city of Paris and Tokyo International Exchange Center that are the examples of existing cooperative housing in overseas.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2019.05a
/
pp.395-397
/
2019
Despite technical advance, human error is the main reason for maritime accidents. To ensure a safety of maritime transporting environment, technical and methodological improvement to react to various types of maritime accidents should be developed instead of ambiguously anticipating maritime accidents due to human errors. Survey, questionnaires, and interview have been routinely applied to understand objective human lookout pattern differences in various navigational situations. Although the descriptive methodology helps systematically categorizing different patterns of human behavior to avoid accidents, the subjective methods limit to objectively recognize physical behavior patterns during navigation. The purpose of the study is to develop an objective lookout pattern detection system using wearable sensors in the simulated navigation environment. In the simulated maritime navigation environment, each participant performed a given navigational situation by wearing the wearable sensors on the wrist, trunk, and head. Activity classification algorithm that was developed in the previous navigation activity classification research was applied. The physical lookout behavior patterns before and after situation-aware showed distinctive patterns, and the results are expected to reduce human errors of navigators.
You, Jaehwan;Seok, Jong Hyeon;Joo, Myungsoo;Bae, Joon-Yong;Kim, Jin Il;Park, Man-Seong;Kim, Kisoon
Biomolecules & Therapeutics
/
v.29
no.3
/
pp.249-262
/
2021
The most effective way to control newly emerging infectious disease, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, is to strengthen preventative or therapeutic public health strategies before the infection spreads worldwide. However, global health systems remain at the early stages in anticipating effective therapeutics or vaccines to combat the SARS-CoV-2 pandemic. While maintaining social distance is the most crucial metric to avoid spreading the virus, symptomatic therapy given to patients on the clinical manifestations helps save lives. The molecular properties of SARS-CoV-2 infection have been quickly elucidated, paving the way to therapeutics, vaccine development, and other medical interventions. Despite this progress, the detailed biomolecular mechanism of SARS-CoV-2 infection remains elusive. Given virus invasion of cells is a determining factor for virulence, understanding the viral entry process can be a mainstay in controlling newly emerged viruses. Since viral entry is mediated by selective cellular proteases or proteins associated with receptors, identification and functional analysis of these proteins could provide a way to disrupt virus propagation. This review comprehensively discusses cellular machinery necessary for SARS-CoV-2 infection. Understanding multifactorial traits of the virus entry will provide a substantial guide to facilitate antiviral drug development.
Existing main path analysis is useful to clarify the backbone of technology developments over the past, but has difficulty in identifying future technology candidates, and also in anticipating changes in the mainstream technology. Our method develops a growth velocity indicator, and combines it with key-route analysis and traversal counts measure in the main path analysis. It enables us to identify rapidly growing paths of future technology candidates, and further to evaluate the relative growth potential of such paths by which can replace the mainstream technology in the main path. Our method can contribute to identifying future technology candidates in a quantitative way by using patents, and broaden the scope of main path analysis research toward foresight. It can be useful for technology strategy in practice. Biofuel technology is exemplified.
This study analyzes the fashion video content of vegan YouTubers in order to understand how the vegan message is being conveyed in media. This study collected data with NoxInfluencer and conducted a case study of the vegan fashion YouTube content. We collected 143 videos for analysis as follows. The characteristics of vegan fashion content were divided into six categories. First, fashion know-how consisted of YouTubers' explanation on vegan fashion, from styling to where to buy vegan and fair trade products. Second, fashion haul content showed second hand products as well as certified vegan fashion products. Third, fashion daily life focused on a day in the life of a vegan YouTuber, casually showcasing fashion in real life. Fourth, fashion products reviews were about vegan YouTubers' thoughts and concerns about various vegan fashion brands and products. Fifth, fashion coordination category consisted of Lookbooks according to seasons. Last, the fashion entertainment category showed YouTubers challenging themselves to dress outside of their comfort zone. The content of the message was distinguished by consumption methods and aesthetic interaction. Also, vegan YouTubers were always anticipating the possibility of appealing to a wider demographic. This study differs from existing studies because it analyzed fashion YouTube content in order to understand the spread of a vegan message in the media environment. This study has its significance in suggesting the direction that the vegan community should take in delivering vegan messages in the future.
An effective teacher community helps the participating teachers improve their instructional quality. This study reports a teacher community consisting of 15 elementary school teachers and one teacher educator. This paper analyzed 15 mathematics lessons in which the teachers implemented the five practices for orchestrating productive mathematics discussions by Smith and Stein (2018) based on the grade-specific discussions as well as the whole community's discussions. The results of this study showed that the overall levels of each practice either increased gradually or maintained at the highest Level 4, as mathematics lessons had been implemented. Specifically, the following practices were quite successful: setting goals for a lesson, selecting an appropriate task, anticipating student responses, and selecting student solutions. However, both sequencing and connecting student solutions were implemented at various levels. Monitoring student work tended to remain at Level 2 which included incorrect implementation of the practice. This paper closes with implications related to the skillful implementation of the five practices through a teacher community.
Muhammad Umer Farooq;Mustafa Latif;Waseemullah;Mirza Adnan Baig;Muhammad Ali Akhtar;Nuzhat Sana
International Journal of Computer Science & Network Security
/
v.23
no.9
/
pp.1-7
/
2023
Demand prediction is an essential component of any business or supply chain. Large retailers need to keep track of tens of millions of items flows each day to ensure smooth operations and strong margins. The demand prediction is in the epicenter of this planning tornado. For business processes in retail companies that deal with a variety of products with short shelf life and foodstuffs, forecast accuracy is of the utmost importance due to the shifting demand pattern, which is impacted by an environment of dynamic and fast response. All sectors strive to produce the ideal quantity of goods at the ideal time, but for retailers, this issue is especially crucial as they also need to effectively manage perishable inventories. In light of this, this research aims to show how Machine Learning approaches can help with demand forecasting in retail and future sales predictions. This will be done in two steps. One by using historic data and another by using open data of weather conditions, fuel, Consumer Price Index (CPI), holidays, any specific events in that area etc. Several machine learning algorithms were applied and compared using the r-squared and mean absolute percentage error (MAPE) assessment metrics. The suggested method improves the effectiveness and quality of feature selection while using a small number of well-chosen features to increase demand prediction accuracy. The model is tested with a one-year weekly dataset after being trained with a two-year weekly dataset. The results show that the suggested expanded feature selection approach provides a very good MAPE range, a very respectable and encouraging value for anticipating retail demand in retail systems.
Muhammad Umer Farooq;Mustafa Latif;Waseem;Mirza Adnan Baig;Muhammad Ali Akhtar;Nuzhat Sana
International Journal of Computer Science & Network Security
/
v.23
no.8
/
pp.210-216
/
2023
Demand prediction is an essential component of any business or supply chain. Large retailers need to keep track of tens of millions of items flows each day to ensure smooth operations and strong margins. The demand prediction is in the epicenter of this planning tornado. For business processes in retail companies that deal with a variety of products with short shelf life and foodstuffs, forecast accuracy is of the utmost importance due to the shifting demand pattern, which is impacted by an environment of dynamic and fast response. All sectors strive to produce the ideal quantity of goods at the ideal time, but for retailers, this issue is especially crucial as they also need to effectively manage perishable inventories. In light of this, this research aims to show how Machine Learning approaches can help with demand forecasting in retail and future sales predictions. This will be done in two steps. One by using historic data and another by using open data of weather conditions, fuel, Consumer Price Index (CPI), holidays, any specific events in that area etc. Several machine learning algorithms were applied and compared using the r-squared and mean absolute percentage error (MAPE) assessment metrics. The suggested method improves the effectiveness and quality of feature selection while using a small number of well-chosen features to increase demand prediction accuracy. The model is tested with a one-year weekly dataset after being trained with a two-year weekly dataset. The results show that the suggested expanded feature selection approach provides a very good MAPE range, a very respectable and encouraging value for anticipating retail demand in retail systems.
The emissions trading system, introduced to reduce greenhouse gas emissions, experienced a sharp increase in emission allowance prices during the second plan period (2018-2020), which led to an increase in the demand for smooth supply and demand of emission allowances, while suppliers anticipating a shortage of emission allowances in the future did not participate in trading. Therefore, the authority temporarily revised the guidelines to ensure that the amount of allowances carried forward is proportional to the trading volume as a market stabilization measure. Through an optimization process using a dynamic nonlinear mathematical model, this paper analyzes the impact of the government's intervention on the carryover policy on GHG emission reductions and emission allowance market prices. According to the simulation analysis results, banking regulations could cause a decline in prices during the regulation period, even though the initial policy was predicted to be adopted.
Purpose: The purpose of this study was to comprehensively understand and describe the meaning of physical activity for managing menopausal symptoms in middle-aged women. Methods: This study targeted middle-aged women with menopausal symptoms who participated in regular exercise at least three times a week for more than 12 weeks. Nine participants were individually interviewed via in-depth face-to-face interviews, and participatory observation was also employed. Colaizzi's phenomenological qualitative research method was applied for analysis. Results: Participants were asked, "What does it means to participate in physical activity at this time of your life?" Fourteen codes, six themes, and three theme clusters were derived for the meaning of physical activity for managing menopausal symptoms these middle-aged women. The six themes were "reviving the exhausted body and mind," "being free from the yoke of pain," "being settled in life," "finding oneself and becoming altruistic," "striving while anticipating change," and "equipping the body and mind." The three theme clusters were "overcoming my past pain," "taking the initiative for today's life," and "moving towards new change." Conclusion: The narratives revealed that physical activity allowed women to overcome menopausal symptoms, the burden of relationships, and stress, thereby enabling them to make positive changes in their lives and have expectations for the future. Thus, physical activity was a positive force in a healthy menopausal transition for women with menopausal symptoms. The findings of this study can be used to encourage physical activity in peri-menopausal women and to develop physical activity programs for managing menopausal symptoms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.