Browse > Article
http://dx.doi.org/10.4062/biomolther.2021.048

Multifactorial Traits of SARS-CoV-2 Cell Entry Related to Diverse Host Proteases and Proteins  

You, Jaehwan (Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine)
Seok, Jong Hyeon (Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine)
Joo, Myungsoo (School of Korean Medicine, Pusan National University)
Bae, Joon-Yong (Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine)
Kim, Jin Il (Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine)
Park, Man-Seong (Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine)
Kim, Kisoon (Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine)
Publication Information
Biomolecules & Therapeutics / v.29, no.3, 2021 , pp. 249-262 More about this Journal
Abstract
The most effective way to control newly emerging infectious disease, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, is to strengthen preventative or therapeutic public health strategies before the infection spreads worldwide. However, global health systems remain at the early stages in anticipating effective therapeutics or vaccines to combat the SARS-CoV-2 pandemic. While maintaining social distance is the most crucial metric to avoid spreading the virus, symptomatic therapy given to patients on the clinical manifestations helps save lives. The molecular properties of SARS-CoV-2 infection have been quickly elucidated, paving the way to therapeutics, vaccine development, and other medical interventions. Despite this progress, the detailed biomolecular mechanism of SARS-CoV-2 infection remains elusive. Given virus invasion of cells is a determining factor for virulence, understanding the viral entry process can be a mainstay in controlling newly emerged viruses. Since viral entry is mediated by selective cellular proteases or proteins associated with receptors, identification and functional analysis of these proteins could provide a way to disrupt virus propagation. This review comprehensively discusses cellular machinery necessary for SARS-CoV-2 infection. Understanding multifactorial traits of the virus entry will provide a substantial guide to facilitate antiviral drug development.
Keywords
SARS-CoV-2; Cell entry; Cellular proteins; Antiviral drugs;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wysocki, J., Ye, M., Rodriguez, E., Gonzalez-Pacheco, F. R., Barrios, C., Evora, K., Schuster, M., Loibner, H., Brosnihan, K., B., Ferrario, C. M., Penninger, J. M. and Batlle, D. (2010) Targeting the degradation of angiotensin II with recombinant angiotensinconverting enzyme 2: prevention of angiotensin II-dependent hypertension. Hypertension 55, 90-98.   DOI
2 Xia, S., Liu, M., Wang, C., Xu, W., Lan, Q., Feng, S., Qi, F., Bao, L., Du, L., Liu, S., Qin, C., Sun, F., Shi, Z., Zhu, Y., Jiang, S. and Lu, L. (2020) Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 30, 343-355.   DOI
3 Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y. and Zhou, Q. (2020) Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444-1448.   DOI
4 Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R. S., Jiang, S. and Li, F. (2014) Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proc. Natl. Acad. Sci. U.S.A. 111, 12516-12521.   DOI
5 Yao, Y. X., Ren, J., Heinen, P., Zambon, M. and Jones, I. M. (2004) Cleavage and serum reactivity of the severe acute respiratory syndrome coronavirus spike protein. J. Infect. Dis. 190, 91-98.   DOI
6 Korkmaz, B., Lesner, A., Marchand-Adam, S., Moss, C. and Jenne, D. E. (2020) Lung protection by cathepsin C inhibition: a new hope for COVID-19 and ARDS? J. Med. Chem. 63, 13258-13265.   DOI
7 Koudelka, K. J., Destito, G., Plummer, E. M., Trauger, S. A., Siuzdak, G. and Manchester, M. (2009) Endothelial targeting of cowpea mosaic virus (CPMV) via surface vimentin. PLoS Pathog. 5, e1000417.   DOI
8 Yasuoka, S., Ohnishi, T., Kawano, S., Tsuchihashi, S., Ogawara, M., Masuda, K., Yamaoka, K., Takahashi, M. and Sano, T. (1997) Purification, characterization, and localization of a novel trypsin-like protease found in the human airway. Am. J. Respir. Cell Mol. Biol. 16, 300-308.   DOI
9 Yeager, C. L., Ashmun, R. A., Williams, R. K., Cardellichio, C. B., Shapiro, L. H., Look, A. T. and Holmes, K. V. (1992) Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357, 420-422.   DOI
10 Yu, Y. T., Chien, S. C., Chen, I. Y., Lai, C. T., Tsay, Y. G., Chang, S. C., and Chang, M. F. (2016) Surface vimentin is critical for the cell entry of SARS-CoV. J. Biomed. Sci. 23, 14.   DOI
11 Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Wu, Y., Yan, J., Shi, Y., Zhang, X. and Gao, G. F. (2017) Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat. Commun. 8, 15092.   DOI
12 Thul, P. J., Akesson, L., Wiking, M., Mahdessian, D., Geladaki, A., AitBlal, H., Alm, T., Asplund, A., Bjork, L., Breckels, L. M., Backstrom, A., Danielsson, F., Fagerberg, L., Fall, J., Gatto, L., Gnann, C., Hober, S., Hjelmare, M., Johansson, F., Lee, S., Lindskog, C., Mulder, J., Mulvey, C. M., Nilsson, P., Oksvold, P., Rockberg, J., Schutten, R., Schwenk, J. M., Sivertsson, A., Sjostedt, E., Skogs, M., Stadler, C., Sullivan, D. P., Tegel, H., Winsnes, C., Zhang, C., Zwahlen, M., Mardinoglu, A., Ponten, F., von Feilitzen, K., Lilley, K. S., Uhlen, M. and Lundberg, E. (2017) A subcellular map of the human proteome. Science 356, eaal3321.   DOI
13 Tian, F., Tong, B., Sun, L., Shi, S., Zheng, B., Wang, Z., Dong, X. and Zheng, P. (2021) Mutation N501Y in RBD of spike protein strengthens the interaction between COVID-19 and its receptor ACE2. bioRxiv doi: 10.1101/2021.02.14.431117 [Preprint].   DOI
14 Wang, H., Yang, P., Liu, K., Guo, F., Zhang, Y., Zhang, G. and Jiang, C. (2008) SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 18, 290-301.   DOI
15 To, K. F. and Lo, A. W. (2004) Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensinconverting enzyme 2 (ACE2). J. Pathol. 203, 740-743.   DOI
16 Vijay, R. (2020) MERS Coronavirus Methods and Protocols. Part of the Methods in Molecular Biology book series. pp. 21-37. Springer.
17 Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T. and Veesler, D. (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281-292.   DOI
18 Wang, Q., Qiu, Y., Li, J. Y., Zhou, Z. J., Liao, C. H. and Ge, X. Y. (2020a) A unique protease cleavage site predicted in the spike protein of the novel pneumonia coronavirus (2019-nCoV) potentially related to viral transmissibility. Virol. Sin. 35, 337-339.   DOI
19 Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., Wang, Q., Zhou, H., Yan, J. and Qi, J. (2020b) Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181, 894-904.   DOI
20 Wibmer, C. K., Ayres, F., Hermanus, T., Madzivhandila, M., Kgagudi, P., Oosthuysen, B., Lambson, B. E., de Oliveira, T., Vermeulen, M., van der Berg, K., Rossouw, T., Boswell, M., Ueckermann, V., Meiring, S., von Gottberg, A., Cohen, C., Morris, L., Bhiman, J. N. and Moore, P. L. (2021) SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. doi: 10.1038/s41591-021-01285-x [Online ahead of print].   DOI
21 Worldometers.info (2021) Coronavirus Update. Available from: https://www.worldometers.info/coronavirus/ [accessed 2021 Mar 25].
22 Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. and Garry, R. F. (2020) The proximal origin of SARS-CoV-2. Nat. Med. 26, 450-452.   DOI
23 Stip, E., Rizvi, T. A., Mustafa, F., Javaid, S., Aburuz, S., Ahmed, N. N., Abdel Aziz, K., Arnone, D., Subbarayan, A., Al Mugaddam, F. and Khan, G. (2020) The large action of chlorpromazine: translational and transdisciplinary considerations in the face of COVID-19. Front. Pharmacol. 11, 577678.   DOI
24 Kato, M., Hashimoto, T., Shimomura, T., Kataoka, H., Ohi, H. and Kitamura, N. (2012) Hepatocyte growth factor activator inhibitor type 1 inhibits protease activity and proteolytic activation of human airway trypsin-like protease. J. Biochem. 151, 179-187.   DOI
25 Kawabata, K., Hagio, T. and Matsuoka, S. (2002) The role of neutrophil elastase in acute lung injury. Eur. J. Pharmacol. 451, 1-10.   DOI
26 Kim, J. K., Fahad, A. M., Shanmukhappa, K. and Kapil, S. (2006) Defining the cellular target(s) of porcine reproductive and respiratory syndrome virus blocking monoclonal antibody 7G10. J. Virol. 80, 689-696.   DOI
27 Buchrieser, J., Dufloo, J., Hubert, M., Monel, B., Planas, D., Rajah, M. M., Planchais, C., Porrot, F., Guivel-Benhassine, F., Van der Werf, S., Casartelli, N., Mouquet, H., Bruel, T. and Schwartz, O. (2020) Syncytia formation by SARS-CoV-2-infected cells. EMBO J. 39, e106267.
28 Daly, J. L., Simonetti, B., Klein, K., Chen, K. E., Williamson, M. K., Anton-Plagaro, C., Shoemark, D. K., Simon-Gracia, L., Bauer, M., Hollandi, R., Greber, U. F., Horvath, P., Sessions, R. B., Helenius, A., Hiscox, J. A., Teesalu, T., Matthews, D. A., Davidson, A. D., Collins, B. M., Cullen, P. J. and Yamauchi, Y. (2020) Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 370, 861-865   DOI
29 Danser, A. H. J., Epstein, M. and Batlle, D. (2020) Renin-angiotensin system blockers and the COVID-19 pandemic: at present there is no evidence to abandon renin-angiotensin system blockers. Hypertension 75, 1382-1385.   DOI
30 Das, S., Ravi, V. and Desai, A. (2011) Japanese encephalitis virus interacts with vimentin to facilitate its entry into porcine kidney cell line. Virus Res. 160, 404-408.   DOI
31 Baron, J., Tarnow, C., Mayoli-Nussle, D., Schilling, E., Meyer, D., Hammami, M., Schwalm, F., Steinmetzer, T., Guan, Y., Garten, W., Klenk, H. D. and Bottcher-Friebertshauser, E. (2013) Matriptase, HAT, and TMPRSS2 activate the hemagglutinin of H9N2 influenza A viruses. J. Virol. 87, 1811-1820.   DOI
32 Alexander, D. J. and Brown, I. H. (2009) History of highly pathogenic avian influenza. Rev. Sci. Tech. 28, 19-38.   DOI
33 Ami, Y., Nagata, N., Shirato, K., Watanabe, R., Iwata, N., Nakagaki, K., Fukushi, S., Saijo, M., Morikawa, S. and Taguchi, F. (2008) Co-infection of respiratory bacterium with severe acute respiratory syndrome coronavirus induces an exacerbated pneumonia in mice. Microbiol. Immunol. 52, 118-127.   DOI
34 Blaydon, D. C., Biancheri, P., Di, W. L., Plagnol, V., Cabral, R. M., Brooke, M. A., van Heel, D. A., Ruschendorf, F., Toynbee, M., Walne, A., O'Toole, E. A., Martin, J. E., Lindley, K., Vulliamy, T., Abrams, D., J., MacDonald, T. T., Harper, J. I. and Kelsell, D. P. (2011) Inflammatory skin and bowel disease linked to ADAM17 deletion. N. Engl. J. Med. 365, 1502-1508.   DOI
35 Belouzard, S., Madu, I. and Whittaker, G. R. (2010) Elastase-mediated activation of the severe acute respiratory syndrome coronavirus spike protein at discrete sites within the S2 domain. J. Biol. Chem. 285, 22758-22763.   DOI
36 Bertram, S., Glowacka, I., Muller, M. A., Lavender, H., Gnirss, K., Nehlmeier, I., Niemeyer, D., He, Y., Simmons, G., Drosten, C., Soilleux, E. J., Jahn, O., Steffen, I. and Pohlmann, S. (2011) Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J. Virol. 85, 13363-13372.   DOI
37 Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack, J. L., Wolfson, M. F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan, S., Nelson, N., Boiani, N., Schooley, K. A., Gerhart, M., Davis, R., Fitzner, J. N., Johnson, R. S., Paxton, R. J., March, C. J. and Cerretti, D. P. (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385, 729-733.   DOI
38 Bosch, B. J., Bartelink, W. and Rottier, P. J. (2008) Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide. J. Virol. 82, 8887-8890.   DOI
39 Hoffmann, H. H., Schneider, W. M., Blomen, V. A., Scull, M. A., Hovnanian, A., Brummelkamp, T. R. and Rice, C. M. (2017) Diverse viruses require the calcium transporter SPCA1 for maturation and spread. Cell Host Microbe 22, 460-470.e5.   DOI
40 Heurich, A., Hofmann-Winkler, H., Gierer, S., Liepold, T., Jahn, O. and Pohlmann, S. (2014) TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol. 88, 1293-1307.   DOI
41 Lambert, D. W., Yarski, M., Warner, F. J., Thornhill, P., Parkin, E. T., Smith, A. I., Hooper, N. M. and Turner, A. J. (2005) Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J. Biol. Chem. 280, 30113-30119.   DOI
42 Hoffmann, M., Hofmann-Winkler, H., Smith, J. C., Kruger, N., Arora, P., Sorensen, L. K., Sogaard, O. S., Hasselstrom, J. B., Winkler, M., Hempel, T., Raich, L., Olsson, S., Danov, O., Jonigk, D., Yamazoe, T., Yamatsuta, K., Mizuno, H., Ludwig, S., Noe, F., Kjolby, M., Braun, A., Sheltzer, J. M. and Pohlmann, S. (2021) Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine 65, 103255.   DOI
43 Hoffmann, M., Kleine-Weber, H. and Pohlmann, S. (2020a) A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell 78, 779-784.e5.   DOI
44 de Vries, E., Tscherne, D. M., Wienholts, M. J., Cobos-Jimenez, V., Scholte, F., Garcia-Sastre, A., Rottier, P. J. and de Haan, C. A. (2011) Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS Pathog. 7, e1001329.   DOI
45 Kuba, K., Imai, Y. and Penninger, J. M. (2006) Angiotensin-converting enzyme 2 in lung diseases. Curr. Opin. Pharmacol. 6, 271-276.   DOI
46 Lai, Z. W., Hanchapola, I., Steer, D. L. and Smith, A. I. (2011) Angiotensin-converting enzyme 2 ectodomain shedding cleavagesite identification: determinants and constraints. Biochemistry 50, 5182-5194.   DOI
47 Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L. and Wang, X. (2020) Structure of the SARSCoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215-220.   DOI
48 Le Coupanec, A., Desforges, M., Meessen-Pinard, M., Dube, M., Day, R., Seidah, N. G. and Talbot, P. J. (2015) Cleavage of a neuroinvasive human respiratory virus spike glycoprotein by proprotein convertases modulates neurovirulence and virus spread within the central nervous system. PLoS Pathog. 11, e1005261.   DOI
49 Kleine-Weber, H., Elzayat, M. T., Hoffmann, M. and Pohlmann, S. (2018) Functional analysis of potentiall cleavage sites in the MERS-coronavirus spike protein. Sci. Rep. 8, 16597.   DOI
50 Li, F. (2016) Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 3, 237-261.   DOI
51 Li, F., Berardi, M., Li, W., Farzan, M., Dormitzer, P. R. and Harrison, S. C. (2006) Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain. J. Virol. 80, 6794-6800.   DOI
52 Li, M. Y., Li, L., Zhang, Y. and Wang, X. S. (2020) Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty 9, 45.   DOI
53 Donoghue, M., Hsieh, F., Baronas, E., Godbout, K., Gosselin, M., Stagliano, N., Donovan, M., Woolf, B., Robison, K., Jeyaseelan, R., Breitbart, R. E. and Acton, S. (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res. 87, E1-E9.
54 Delmas, B., Gelfi, J., L'Haridon, R., Vogel, L. K., Sjostrom, H., Noren, O. and Laude, H. (1992) Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357, 417-420.   DOI
55 Denison, M. R., Graham, R. L., Donaldson, E. F., Eckerle, L. D. and Baric, R. S. (2011) Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biol. 8, 270-279.   DOI
56 Ding, Y., Wang, H., Shen, H., Li, Z., Geng, J., Han, H., Cai, J., Li, X., Kang, W., Weng, D., Lu, Y., Wu, D., He, L. and Yao, K. (2003) The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J. Pathol. 200, 282-289.   DOI
57 Bugge, T. H., Antalis, T. M. and Wu, Q. (2009) Type II transmembrane serine proteases. J. Biol. Chem. 284, 23177-23181.   DOI
58 Dusterhoft, S., Hobel, K., Oldefest, M., Lokau, J., Waetzig, G. H., Chalaris, A., Garbers, C., Scheller, J., Rose-John, S., Lorenzen, I. and Grotzinger, J. (2014) A disintegrin and metalloprotease 17 dynamic interaction sequence, the sweet tooth for the human interleukin 6 receptor. J. Biol. Chem. 289, 16336-16348.   DOI
59 Dusterhoft, S., Jung, S., Hung, C. W., Tholey, A., Sonnichsen, F. D., Grotzinger, J. and Lorenzen, I. (2013) Membrane-proximal domain of a disintegrin and metalloprotease-17 represents the putative molecular switch of its shedding activity operated by protein-disulfide isomerase. J. Am. Chem. Soc. 135, 5776-5781.   DOI
60 Fackler, O. T. and Peterlin, B. M. (2000) Endocytic entry of HIV-1. Curr. Biol. 10, 1005-1008.   DOI
61 Cantin, C., Holguera, J., Ferreira, L., Villar, E. and Munoz-Barroso, I. (2007) Newcastle disease virus may enter cells by caveolae-mediated endocytosis. J. Gen. Virol. 88, 559-569.   DOI
62 Cantuti-Castelvetri, L., Ojha, R., Pedro, L. D., Djannatian, M., Franz, J., Kuivanen, S., van der Meer, F., Kallio, K., Kaya, T., Anastasina, M., Smura, T., Levanov, L., Szirovicza, L., Tobi, A., Kallio-Kokko, H., Osterlund, P., Joensuu, M., Meunier, F. A., Butcher, S. J., Winkler, M. S., Mollenhauer, B., Helenius, A., Gokce, O., Teesalu, T., Hepojoki, J., Vapalahti, O., Stadelmann, C., Balistreri, G. and Simons, M. (2020) Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370, 856-860.   DOI
63 Cheng, Y. W., Chao, T. L., Li, C. L., Chiu, M. F., Kao, H. C., Wang, S. H., Pang, Y. H., Lin, C. H., Tsai, Y. M., Lee, W. H., Tao, M. H., Ho, T. C., Wu, P. Y., Jang, L. T., Chen, P. J., Chang, S. Y. and Yeh, S. H. (2020) Furin inhibitors block SARS-CoV-2 spike protein cleavage to suppress virus production and cytopathic effects. Cell Rep. 33, 108254.   DOI
64 Coronaviridae Study Group of the International Committee on Taxonomy of Viruses (2020) The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5, 536-544.   DOI
65 Coutard, B., Valle, C., de Lamballerie, X., Canard, B., Seidah, N. G. and Decroly, E. (2020) The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 176, 104742.   DOI
66 Hussain, M., Jabeen, N., Raza, F., Shabbir, S., Baig, A. A., Amanullah, A. and Aziz, B. (2020) Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. J. Med. Virol. 92, 1580-1586.   DOI
67 Bassi, D. E., Zhang, J., Renner, C. and Klein-Szanto, A. J. (2017) Targeting proprotein convertases in furin-rich lung cancer cells results in decreased in vitro and in vivo growth. Mol. Carcinog. 56, 1182-1188.   DOI
68 Huynh, T., Wang, H. and Luan, B. (2020) In silico exploration of the molecular mechanism of clinically oriented drugs for possibly inhibiting SARS-CoV-2's main protease. J. Phys. Chem. Lett. 11, 4413-4420.   DOI
69 Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Muller, M. A., Drosten, C. and Pohlmann, S. (2020b) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271-280.e8.   DOI
70 Inoue, Y., Tanaka, N., Tanaka, Y., Inoue, S., Morita, K., Zhuang, M., Hattori, T. and Sugamura, K. (2007) Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J. Virol. 81, 8722-8729.   DOI
71 Tada, T., Dcosta, B. M., Samanovic-Golden, M., Herati, R. S., Cornelius, A., Mulligan, M. J. and Landau, N. R. (2021) Neutralization of viruses with European, South African, and United States SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA vaccine-elicited antibodies. bioRxiv doi: 10.1101/2021.02.05.430003 [Preprint].   DOI
72 Suguitan, A. L., Jr., Matsuoka, Y., Lau, Y. F., Santos, C. P., Vogel, L., Cheng, L. I., Orandle, M. and Subbarao, K. (2012) The multi-basic cleavage site of the hemagglutinin of highly pathogenic A/Vietnam/1203/2004 (H5N1) avian influenza virus acts as a virulence factor in a host-specific manner in mammals. J. Virol. 86, 2706-2714.   DOI
73 Sun, X., Yau, V. K., Briggs, B. J. and Whittaker, G. R. (2005) Role of clathrin-mediated endocytosis during vesicular stomatitis virus entry into host cells. Virology 338, 53-60.   DOI
74 Sureda, A., Alizadeh, J., Nabavi, S. F., Berindan-Neagoe, I., Cismaru, C. A., Jeandet, P., Los, M. J., Clementi, E., Nabavi, S. M. and Ghavami, S. (2020) Endoplasmic reticulum as a potential therapeutic target for covid-19 infection management? Eur. J. Pharmacol. 882, 173288.   DOI
75 Teesalu, T., Sugahara, K. N., Kotamraju, V. R. and Ruoslahti, E. (2009) C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc. Natl. Acad. Sci. U.S.A. 106, 16157-16162.   DOI
76 Schafer, G., Graham, L. M., Lang, D. M., Blumenthal, M. J., Bergant Marusic, M. and Katz, A. A. (2017) Vimentin modulates infectious internalization of human papillomavirus 16 pseudovirions. J. Virol. 91, e00307-17.
77 Roth, L., Prahst, C., Ruckdeschel, T., Savant, S., Westrom, S., Fantin, A., Riedel, M., Heroult, M., Ruhrberg, C. and Augustin, H. G. (2016) Neuropilin-1 mediates vascular permeability independently of vascular endothelial growth factor receptor-2 activation. Sci. Signal. 9, ra42.   DOI
78 Sahebnasagh, A., Saghafi, F., Safdari, M., Khataminia, M., Sadremomtaz, A., Talaei, Z., RezaiGhaleno, H., Bagheri, M., Habtemariam, S. and Avan, R. (2020) Neutrophil elastase inhibitor (sivelestat) may be a promising therapeutic option for management of acute lung injury/acute respiratory distress syndrome or disseminated intravascular coagulation in COVID-19. J. Clin. Pharm. Ther. 45, 1515-1519.   DOI
79 Sales, K. U., Hobson, J. P., Wagenaar-Miller, R., Szabo, R., Rasmussen, A. L., Bey, A., Shah, M. F., Molinolo, A. A. and Bugge, T. H. (2011) Expression and genetic loss of function analysis of the HAT/DESC cluster proteases TMPRSS11A and HAT. PLoS ONE 6, e23261.   DOI
80 Seidah, N. G., and Chretien, M. (1999) Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res. 848, 45-62.   DOI
81 Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A. and Li, F. (2020a) Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221-224.   DOI
82 Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A. and Li, F. (2020b) Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. U.S.A. 117, 11727-11734.   DOI
83 Drees, L., Konigsmann, T., Jaspers, M., Pflanz, R., Riedel, D. and Schuh, R. (2019) Conserved function of the matriptase-prostasin proteolytic cascade during epithelial morphogenesis. PLoS Genet. 15, e1007882.   DOI
84 Munster, V. J., Schrauwen, E. J., de Wit, E., van den Brand, J. M., Bestebroer, T. M., Herfst, S., Rimmelzwaan, G. F., Osterhaus, A. D. and Fouchier, R. A. (2010) Insertion of a multi-basic cleavage motif into the hemagglutinin of a low-pathogenic avian influenza H6N1 virus induces a highly pathogenic phenotype. J. Virol. 84, 7953-7960.   DOI
85 Murza, A., Dion, S. P., Boudreault, P. L., Desilets, A., Leduc, R. and Marsault, E. (2020) Inhibitors of type II transmembrane serine proteases in the treatment of diseases of the respiratory tract - a review of patent literature. Expert Opin. Ther. Pat. 30, 807-824.   DOI
86 Perico, L., Benigni, A. and Remuzzi, G. (2020) Should COVID-19 concern nephrologists? Why and to what extent? The emerging impasse of angiotensin blockade. Nephron 144, 213-221.   DOI
87 Ferrario, C. M., Jessup, J., Chappell, M. C., Averill, D. B., Brosnihan, K. B., Tallant, E. A., Diz, D. I. and Gallagher, P. E. (2005) Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 111, 2605-2610.   DOI
88 Glebov, O. O. (2020) Understanding SARS-CoV-2 endocytosis for COVID-19 drug repurposing. FEBS J. 287, 3664-3671.   DOI
89 Glowacka, I., Bertram, S., Muller, M. A., Allen, P., Soilleux, E., Pfefferle, S., Steffen, I., Tsegaye, T. S., He, Y., Gnirss, K., Niemeyer, D., Schneider, H., Drosten, C. and Pohlmann, S. (2011) Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J. Virol. 85, 4122-4134.   DOI
90 Bottcher-Friebertshauser, E., Garten, W., Matrosovich, M. and Klenk, H. D. (2014) The hemagglutinin: a determinant of pathogenicity. Curr. Top. Microbiol. Immunol. 385, 3-34.   DOI
91 Kam, Y. W., Okumura, Y., Kido, H., Ng, L. F., Bruzzone, R. and Altmeyer, R. (2009) Cleavage of the SARS coronavirus spike glycoprotein by airway proteases enhances virus entry into human bronchial epithelial cells in vitro. PLoS ONE 4, e7870.   DOI
92 Jarvis, A., Allerston, C. K., Jia, H., Herzog, B., Garza-Garcia, A., Winfield, N., Ellard, K., Aqil, R., Lynch, R., Chapman, C., Hartzoulakis, B., Nally, J., Stewart, M., Cheng, L., Menon, M., Tickner, M., Djordjevic, S., Driscoll, P. C., Zachary, I. and Selwood, D. L. (2010) Small molecule inhibitors of the neuropilin-1 vascular endothelial growth factor A (VEGF-A) interaction. J. Med. Chem. 53, 2215-2226.   DOI
93 Jia, H. P., Look, D. C., Tan, P., Shi, L., Hickey, M., Gakhar, L., Chappell, M. C., Wohlford-Lenane, C. and McCray, P. B., Jr. (2009) Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. Am. J. Physiol. Lung Cell. Mol. Physiol. 297, L84-L96.   DOI
94 Kalin, S., Amstutz, B., Gastaldelli, M., Wolfrum, N., Boucke, K., Havenga, M., DiGennaro, F., Liska, N., Hemmi, S. and Greber, U. F. (2010) Macropinocytotic uptake and infection of human epithelial cells with species B2 adenovirus type 35. J. Virol. 84, 5336-5350.   DOI
95 Gold, S., Monaghan, P., Mertens, P. and Jackson, T. (2010) A clathrin independent macropinocytosis-like entry mechanism used by blue-tongue virus-1 during infection of BHK cells. PLoS ONE 5, e11360.   DOI
96 Gomes, C. P., Fernandes, D. E., Casimiro, F., da Mata, G. F., Passos, M. T., Varela, P., Mastroianni-Kirsztajn, G. and Pesquero, J. B. (2020) Cathepsin L in COVID-19: from pharmacological evidences to genetics. Front. Cell. Infect. Microbiol. 10, 589505.   DOI
97 Grimm, C. and Tang, R. (2020) Could an endo-lysosomal ion channel be the Achilles heel of SARS-CoV2? Cell Calcium 88, 102212.   DOI
98 Zhao, Y., Zhao, Z., Wang, Y., Zhou, Y., Ma, Y. and Zuo, W. (2020) Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. Am. J. Respir. Crit. Care Med. 202, 756-759.   DOI
99 Yurkovetskiy, L., Wang, X., Pascal, K. E., Tomkins-Tinch, C., Nyalile, T. P., Wang, Y., Baum, A., Diehl, W. E., Dauphin, A., Carbone, C., Veinotte, K., Egri, S. B., Schaffner, S. F., Lemieux, J. E., Munro, J. B., Rafique, A., Barve, A., Sabeti, P. C., Kyratsous, C. A., Dudkina, N. V., Shen, K. and Luban, J. (2020) Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell 183, 739-751.e8.   DOI
100 Zhang, J., Cai, Y., Xiao, T., Lu, J., Peng, H., Sterling, S. M., Walsh, R. M., Jr., Rits-Volloch, S., Zhu, H., Woosley, A. N., Yang, W., Sliz, P. and Chen, B. (2021) Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science doi: 10.1126/science.abf2303 [Online ahead of print].   DOI
101 Zhou, F., Yu, T., Du, R., Fan, G.,Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H. and Cao, B. (2020a) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054-1062.   DOI
102 Haga, S., Yamamoto, N., Nakai-Murakami, C., Osawa, Y., Tokunaga, K., Sata, T., Yamamoto, N., Sasazuki, T. and Ishizaka, Y. (2008) Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry. Proc. Natl. Acad. Sci. U.S.A. 105, 7809-7814.   DOI
103 Batlle, D., Wysocki, J. and Satchell, K. (2020) Soluble angiotensinconverting enzyme 2: a potential approach for coronavirus infection therapy? Clin. Sci. (Lond.) 134, 543-545.   DOI
104 Belouzard, S., Chu, V. C. and Whittaker, G. R. (2009) Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc. Natl. Acad. Sci. U.S.A. 106, 5871-5876.   DOI
105 Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., Zheng, X. S., Zhao, K., Chen, Q. J., Deng, F., Liu, L. L., Yan, B., Zhan, F. X., Wang, Y. Y., Xiao, G. F. and Shi, Z. L. (2020b) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273.   DOI
106 Zipeto, D., Palmeira, J., Arganaraz, G. A. and Arganaraz, E. R. (2020) ACE2/ADAM17/TMPRSS2 interplay may be the main risk factor for COVID-19. Front. Immunol. 11, 576745.   DOI
107 Haga, S., Nagata, N., Okamura, T., Yamamoto, N., Sata, T., Yamamoto, N., Sasazuki, T. and Ishizaka, Y. (2010) TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds. Antiviral Res. 85, 551-555.   DOI
108 Hamilton, B. S., Gludish, D. W. and Whittaker, G. R. (2012) Cleavage activation of the human-adapted influenza virus subtypes by matriptase reveals both subtype and strain specificities. J. Virol. 86, 10579-10586.   DOI
109 Hamming, I., Timens, W., Bulthuis, M. L., Lely, A. T., Navis, G. and van Goor, H. (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 203, 631-637.   DOI
110 Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C. and Zhang, Y. Z. (2020) A new coronavirus associated with human respiratory disease in China. Nature 579, 265-269.   DOI
111 Wu, J., Deng, W., Li, S. and Yang, X. (2021) Advances in research on ACE2 as a receptor for 2019-nCoV. Cell. Mol. Life Sci. 78, 531-544.   DOI
112 Shrimp, J. H., Kales, S. C., Sanderson, P. E., Simeonov, A., Shen, M. and Hall, M. D. (2020) An enzymatic TMPRSS2 assay for assessment of clinical candidates and discovery of inhibitors as potential treatment of COVID-19. ACS Pharmacol. Transl. Sci. 3, 997-1007   DOI
113 Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S. and McLellan, J. S. (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260-1263.   DOI
114 Shi, J. Y., Pan, H. Y., Liu, K., Pan, M. and Si, G. J. (2020) Expression of ectopic trypsin in atherosclerotic plaques and the effects of aprotinin on plaque stability. Arch. Biochem. Biophys. 690, 108460.   DOI
115 Shirato, K., Kawase, M. and Matsuyama, S. (2013) Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J. Virol. 87, 12552-12561.   DOI
116 Shulla, A., Heald-Sargent, T., Subramanya, G., Zhao, J., Perlman, S. and Gallagher, T. (2011) A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J. Virol. 85, 873-882.   DOI
117 Sieczkarski, S. B. and Whittaker, G. R. (2005) Characterization of the host cell entry of filamentous influenza virus. Arch. Virol. 150, 1783-1796.   DOI
118 South, A. M., Tomlinson, L., Edmonston, D., Hiremath, S. and Sparks, M. A. (2020) Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic. Nat. Rev. Nephrol. 16, 305-307.   DOI
119 Qian, Z., Dominguez, S. R. and Holmes, K. V. (2013) Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. PLoS ONE 8, e76469.   DOI
120 Thomas, G. (2002) Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat. Rev. Mol. Cell Biol. 3, 753-766.   DOI
121 Ramos, I., Stamatakis, K., Oeste, C. L. and Perez-Sala, D. (2020) Vimentin as a multifaceted player and potential therapeutic target in viral infections. Int. J. Mol. Sci. 21, 4675.   DOI
122 Mizuiri, S. and Ohashi, Y. (2015) ACE and ACE2 in kidney disease. World J. Nephrol. 4, 74-82.   DOI
123 Scheibner, D., Ulrich, R., Fatola, O. I., Graaf, A., Gischke, M., Salaheldin, A. H., Harder, T. C., Veits, J., Mettenleiter, T. C. and Abdelwhab, E. M. (2019) Variable impact of the hemagglutinin polybasic cleavage site on virulence and pathogenesis of avian influenza H7N7 virus in chickens, turkeys and ducks. Sci. Rep. 9, 11556.   DOI
124 Schreiber, B., Patel, A. and Verma, A. (2020) Shedding light on COVID-19: ADAM17 the missing link? Am. J. Ther. doi: 10.1097/MJT.0000000000001226 [Online ahead of print].   DOI
125 Seidah, N. G. and Prat, A. (2012) The biology and therapeutic targeting of the proprotein convertases. Nat. Rev. Drug Discov. 11, 367-383.   DOI
126 Shema Mugisha, C., Vuong, H. R., Puray-Chavez, M., Bailey, A. L., Fox, J. M., Chen, R. E., Wessel, A. W., Scott, J. M., Harastani, H. H., Boon, A., Shin, H. and Kutluay, S. B. (2020) A simplified quantitative real-time PCR assay for monitoring SARS-CoV-2 growth in cell culture. mSphere 5, e00658-20.
127 Millet, J. K. and Whittaker, G. R. (2014) Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc. Natl. Acad. Sci. U.S.A. 111, 15214-15219.   DOI
128 Monteil, V., Kwon, H., Prado, P., Hagelkruys, A., Wimmer, R. A., Stahl, M., Leopoldi, A., Garreta, E., Hurtado Del Pozo, C., Prosper, F., Romero, J. P., Wirnsberger, G., Zhang, H., Slutsky, A. S., Conder, R., Montserrat, N., Mirazimi, A. and Penninger, J. M. (2020) Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181, 905-913.e7.   DOI
129 Mor-Vaknin, N., Punturieri, A., Sitwala, K. and Markovitz, D. M. (2003) Vimentin is secreted by activated macrophages. Nat. Cell Biol. 5, 59-63.   DOI
130 Mwenda, M., Saasa, N., Sinyange, N., Busby., G., Chipimo, P. J., Hendry, J., Kapona, O., Yingst, S., Hines, J. Z., Minchella, P., Simulundu, E., Changula, K., Nalubamba, K. S., Sawa, H., Kajihara, M., Yamagishi, J., Kapin'a, M., Kapata, N., Fwoloshi, S., Zulu, P., Mulenga, L. B., Agolory, S., Mukonka, V. and Bridges, D. J. (2020) Detection of B.1.351 SARS-CoV-2 variant strain - Zambia, December 2020. MMWR Morb. Mortal. Wkly. Rep. 70, 280-282.
131 Nakayama, K. (1997) Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem. J. 327, 625-635.   DOI
132 Nedelkov, D. (2008) Population proteomics: investigation of protein diversity in human populations. Proteomics 8, 779-786.   DOI
133 Nomura, R. (2005) Caveolar endocytosis and virus entry. Uirusu 55, 19-26.   DOI
134 Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., Guo, L., Guo, R., Chen, T., Hu, J., Xiang, Z., Mu, Z., Chen, X., Chen, J., Hu, K., Jin, Q., Wang, J. and Qian, Z. (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 11, 1620.   DOI
135 Palau, V., Riera, M. and Soler, M. J. (2020) ADAM17 inhibition may exert a protective effect on COVID-19. Nephrol. Dial. Transplant. 35, 1071-1072.   DOI
136 Matsushima, R., Takahashi, A., Nakaya, Y., Maezawa, H., Miki, M., Nakamura, Y., Ohgushi, F. and Yasuoka, S. (2006) Human airway trypsin-like protease stimulates human bronchial fibroblast proliferation in a protease-activated receptor-2-dependent pathway. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L385- L395.   DOI
137 Liu, P. P., Blet, A., Smyth, D. and Li, H. (2020) The science underlying COVID-19: implications for the cardiovascular system. Circulation 142, 68-78.   DOI
138 Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Zhang, W., Yuan, Y., Bao, J., Zhang, B., Shi, Y., Yan, J. and Gao, G. F. (2013) Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 500, 227-231.   DOI
139 Luczo, J. M., Stambas, J., Durr, P. A., Michalski, W. P. and Bingham, J. (2015) Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif. Rev. Med. Virol. 25, 406-430.   DOI
140 Matsuyama, S. (2011) Protease-dependent cell entry mechanism of coronaviruses. Uirusu 61, 109-116.   DOI
141 Matsuyama, S., Nagata, N., Shirato, K., Kawase, M., Takeda, M. and Taguchi, F. (2010) Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol. 84, 12658-12664.   DOI
142 Matsuyama, S., Nao, N., Shirato, K., Kawase, M., Saito, S., Takayama, I., Nagata, N., Sekizuka, T., Katoh, H., Kato, F., Sakata, M., Tahara, M., Kutsuna, S., Ohmagari, N., Kuroda, M., Suzuki, T., Kageyama, T. and Takeda, M. (2020) Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. U.S.A. 117, 7001-7003.   DOI
143 Millet, J. K. and Whittaker G. R. (2015) Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res. 202, 120-134.   DOI
144 Matsuyama, S., Ujike, M., Morikawa, S., Tashiro, M. and Taguchi, F. (2005) Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc. Natl. Acad. Sci. U.S.A. 102, 12543-12547.   DOI
145 Mbikay, M., Sirois, F., Yao, J., Seidah, N. G. and Chretien, M. (1997) Comparative analysis of expression of the proprotein convertases furin, PACE4, PC1 and PC2 in human lung tumours. Br. J. Cancer 75, 1509-1514.   DOI
146 Menachery, V. D., Dinnon, K. H., 3rd, Yount, B. L., Jr., McAnarney, E. T., Gralinski, L. E., Hale, A., Graham, R. L., Scobey, T., Anthony, S. J., Wang, L., Graham, B., Randell, S. H., Lipkin, W. I. and Baric, R. S. (2020) Trypsin treatment unlocks barrier for zoonotic bat coronavirus infection. J. Virol. 94, e01774-19.
147 Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., Choe, H. and Farzan, M. (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450-454.   DOI
148 List, K., Bugge, T. H. and Szabo, R. (2006) Matriptase: potent proteolysis on the cell surface. Mol. Med. 12, 1-7.   DOI