• 제목/요약/키워드: antibiotic resistance genes

검색결과 222건 처리시간 0.025초

수질환경에서 일어나는 항생물질 내성유전자의 전이와 재조합 (Transfer and genetic recombination of antibiotic resistance genes occurring in water environment)

  • 김치경;이성기;김영창
    • 한국미생물·생명공학회지
    • /
    • 제14권3호
    • /
    • pp.245-250
    • /
    • 1986
  • 청주시 무심천의 하천수에서 항생물질에 내성을 나타내는 Gram 음성 세균을 분리하여 수질환경에서 일어나는 R 플라스미드의 전이를 연구하였다. 분리된 균주사이에서 접합에 의한 R 플라스미드의 전이는 실험실 환경에서 1.1$\times$$10^{-6}$-1.2$\times$$10^{-7}$, 하천의 수질환경에서 1.2$\times$$10^{-7}$-1.0$\times$$10^{-9}$으로 나타나, 자연의 수질환경에서도 R 플라스미드의 전이가 일어남을 확인하였다. 또 T-44 균주의 Ap$^{r}$Cm$^{r}$Tc$^{r}$ 플라스미드는 형질전환에 의하여 E. coli HB 101에 1.7$\times$$10^{-6}$의 비율로 전이되었다. 분자의 크기가 약 9.01kb로 측정된 Ap$^{r}$Cm$^{r}$Tc$^{r}$플라스미드 DNA를 제한효소로 처리한 결과 이 플라스비드에는 EcoRI과 BamHI의 절단부위가 각각 하나씩 존재하고 P-stI의 절단부위는 3개가 있었다.

  • PDF

Acinetobacter sp. B-W의 2, 3-dihydroxybenzoic acid 생산과 항생제 저항성에 미치는 플라스미드 제거 효과 (Effect of plasmid curing on the 2, 3-dihydroxybenzoic acid production and antibiotic resistance of Acinetobacter sp. B-W)

  • 김경자;김진우;양용준
    • 미생물학회지
    • /
    • 제52권3호
    • /
    • pp.254-259
    • /
    • 2016
  • 시드로포어인 2, 3-dihydroxybenzoic acid (DHB)를 생산하는 Acinetobacter sp. B-W의 플라스미드를 분석한 결과, 20 kb 크기의 플라스미드를 함유하였다. 배양 온도 $43^{\circ}C$ 가 플라스미드가 제거된 돌연변이체 생산에 효과적이었다. 이 돌연변이체는 2,3-DHB 생산 능력을 소실하였으며, chrome azurol S (CAS) 아가 배지에서 시드로포어 생산이 검출되지 않았다. 포도당과 황산 망간을 함유한 배지에서 $28^{\circ}C$로 3일간 배양한 B-W 원 균주와 돌연변이체의 배양 상등액의 pH는 각각 4.5와 8.5로 나타났다. 돌연변이체에서는 ampicillin, actinomycin D, bacitracin, lincomycin과 vancomycin 같은 항생제에 대한 저항성이 사라졌으며, 이러한 항생제에 대한 최소 억제 농도(MIC)가 급격하게 감소하였다. B-W 균주에서 분리한 플라스미드로 대장균을 형질전환시킨 결과, 원 균주와 같은 크기의 플라스미드가 이 형질전환 대장균에서 발견되었다. 플라스미드가 제거된 돌연변이체에서는 플라스미드가 발견되지 않았다. 20 kb 크기의 플라스미드에 2,3-DHB 생산 유전자와 여러 항생제 저항성 유전자가 자리잡고 있는 것으로 추정된다.

Paromomycin Derived from Streptomyces sp. AG-P 1441 Induces Resistance against Two Major Pathogens of Chili Pepper

  • Balaraju, Kotnala;Kim, Chang-Jin;Park, Dong-Jin;Nam, Ki-Woong;Zhang, Kecheng;Sang, Mee Kyung;Park, Kyungseok
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권9호
    • /
    • pp.1542-1550
    • /
    • 2016
  • This is the first report that paromomycin, an antibiotic derived from Streptomyces sp. AG-P 1441 (AG-P 1441), controlled Phytophthora blight and soft rot diseases caused by Phytophthora capsici and Pectobacterium carotovorum, respectively, in chili pepper (Capsicum annum L.). Chili pepper plants treated with paromomycin by foliar spray or soil drenching 7 days prior to inoculation with P. capsici zoospores showed significant (p < 0.05) reduction in disease severity (%) when compared with untreated control plants. The disease severity of Phytophthora blight was recorded as 8% and 50% for foliar spray and soil drench, respectively, at 1.0 ppm of paromomycin, compared with untreated control, where disease severity was 83% and 100% by foliar spray and soil drench, respectively. A greater reduction of soft rot lesion areas per leaf disk was observed in treated plants using paromomycin (1.0 μg/ml) by infiltration or soil drench in comparison with untreated control plants. Paromomycin treatment did not negatively affect the growth of chili pepper. Furthermore, the treatment slightly promoted growth; this growth was supported by increased chlorophyll content in paromomycin-treated chili pepper plants. Additionally, paromomycin likely induced resistance as confirmed by the expression of pathogenesis-related (PR) genes: PR-1, β-1,3-glucanase, chitinase, PR-4, peroxidase, and PR-10, which enhanced plant defense against P. capsici in chili pepper. This finding indicates that AG-P 1441 plays a role in pathogen resistance upon the activation of defense genes, by secretion of the plant resistance elicitor, paromomycin.

Insight into Norfloxacin Resistance of Acinetobacter oleivorans DR1: Target Gene Mutation, Persister, and RNA-Seq Analyses

  • Kim, Jisun;Noh, Jaemin;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권9호
    • /
    • pp.1293-1303
    • /
    • 2013
  • Antibiotic resistance of soilborne Acinetobacter species has been poorly explored. In this study, norfloxacin resistance of a soil bacterium, Acinetobacter oleivorans DR1, was investigated. The frequencies of mutant appearance of all tested non-pathogenic Acinetobacter strains were lower than those of pathogenic strains under minimum inhibitory concentration (MIC). When the quinolone-resistance-determining region of the gyrA gene was examined, only one mutant (His78Asn) out of 10 resistant variants had a mutation. Whole transcriptome analysis using a RNA-Seq demonstrated that genes involved in SOS response and DNA repair were significantly up-regulated by norfloxacin. Determining the MICs of survival cells after norfloxacin treatment confirmed some of those cells were indeed persister cells. Ten colonies, randomly selected from among those that survived in the presence of norfloxacin, did not exhibit increased MIC. Thus, both the low mutation frequency of the target gene and SOS response under norfloxacin suggested that persister formation might contribute to the resistance of DR1 against norfloxacin. The persister frequency increased without a change in MIC when stationary phase cells, low growth rates conditions, and growth-deficient dnaJ mutant were used. Taken together, our comprehensive approach, which included mutational analysis of the target gene, persister formation assays, and RNA sequencing, indicated that DR1 survival when exposed to norfloxacin is related not only to target gene mutation but also to persister formation, possibly through up-regulation of the SOS response and DNA repair genes.

Characterization of Muations in DNA Gyrase and Topoisomerase IV Involved in Resistant Mutants to DW-286a, a Novel Quinolone Antibiotic, in Streptococcus pneumoniae

  • Seol, Min-Jeong;Kim, Hyun-Joo;Park, Hee-Soo;Kwak, Jin-Hwan
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.70.2-71
    • /
    • 2003
  • Quinolone resistance in Streptococcus pneumoniae is related to mutations in the DNA gyrase and topoisomerase IV genes. DW-286a displayed potent activity against S. pneumoniae C9211 (MIC, 0.015 ${\mu}$g/ml) compared with gemifloxacin (MIC, 0.06 ${\mu}$g/ml). This study was performed to analyze the ability of DW-286a to cause resistance development in S. pneumoniae and to establish whether DNA gyrase or topoisomerase IV is primary target. DW-286a resistant mutants of S. pneumoniae C9211 were generated by stepwise selection at increasing drug concentration. (omitted)

  • PDF

Draft Genome of an AmpC-β-Lactamase Producing Serratia marcescens Isolate from Fresh farm Tomatoes in South Africa

  • Maike Claussen;Stefan Schmidt
    • 한국미생물·생명공학회지
    • /
    • 제51권3호
    • /
    • pp.309-313
    • /
    • 2023
  • Here we report essential features of the draft genome of an AmpC-β-lactamase-producing bacterial isolate obtained from farm tomatoes in South Africa. The isolate designated strain Tom1 featured a genome of 4950426 bp with a G+C% of 59.83. It was identified as Serratia marcescens by ribosomal multilocus sequence typing (rMLST), digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), and phylogenetic analysis using reference genomes. Its genome encoded an AmpC-β-lactamase (blaSST-1), an efflux pump providing tetracycline resistance (tet(41)), and an aminoglycoside acetyltransferase (aac(6')-Ic). Additionally, genes encoding proteins involved in prodigiosin biosynthesis and associated with adherence, biofilm formation, virulence, and pathogenicity were detected.

임상검체에서 분리된 Escherichia coli와 Klebsiella pneumoniae의 Extended-Spectrum β-Lactamase 유전자형 및 분자유전학적 특성 (Molecular Characteristics of Extended-Spectrum β-Lactamase Genes in Clinical Isolates of Escherichia coli and Klebsiella pneumoniae)

  • 정경석
    • 대한임상검사과학회지
    • /
    • 제38권1호
    • /
    • pp.26-33
    • /
    • 2006
  • Recently, the rapid increase in extended-spectrum ${\beta}$-lactamase (ESBL) producing clinical isolates has become a serious problem. In this study, the epidemiologic features and molecular characteristics of ESBL among clinical isolates of Escherichia coli and Klebsiella pneumoniae, antibiotic susceptibility testing, genotype of the ESBL and patterns of chromosomal DNA from PFGE (pulsed field gel electrophoresis) were observed. A total of 53 ESBL-producing clinical isolates (30 of E. coli and 23 of Klebsiella pneumoniae) were collected from two university hospitals in the period of June to July in 2002 and 2003 respectively. The antibiotic resistance frequency of those 53 strains was tested by the disk agar diffusion method with the result that all the strains were resistant to cephalothin. To other antibiotics, the resistance rates of E. coli (30 isolates) were in order of ceftazidime (90.0%), cefotaxime and aztreonam (respectively 83.3%). Also, the resistance rates of K. pneumoniae (23 isolates) were in order of aztreonam (78.3%), ceftazidime (73.9%) and cefotaxime (65.3%). Also the sensitivity of ceftazidime-clavulanic acid were 100% in E. coli and 95.7% in K. pneumoniae. And the sensitivity of cefotaxime-clavulanic acid was 96.7% in E. coli and 91.3% in K. pneumoniae. The types of the ESBL genes were determined by using polymerase chain reaction (PCR). Among the 30 isolates of ESBL-producing E. coli, 6 (20.0%) have SHV only, 5 (16.7%) have TEM only and, 18 (60.0%) have both of TEM and SHV. Among the 23 isolates of ESBL-producing K. pneumoniae, 7 (30.4%) have SHV only, 2 (8.7%) have TEM only, and 14 (60.9%) have both of TEM and SHV. These results show that 52 strains, with only one exception, were confirmed as either TEM or SHV. The patterns of Xba I-digested chromosomal DNA of ESBL-producing E. coli and K. pneumoniae isolates were analyzed by PFGE. PFGE patterns of E. coli and K. pneumoniae were multiclonal, but many strains were grouped into a few types. Therefore, it seems that there were clonal outbreaks or possible horizontal spread. In conclusion, the TEM and SHV ${\beta}$-lactamase are most widely spread in E. coli and K. pneumoniae in Korea. As these types are usually carried by plasmids, the spread of these ${\beta}$-lactamase genes could compromise the future usefulness of third generation cephalosporins for the treatment of infections caused by E. coli and K. pneumoniae.

  • PDF

Isolation and Characterization of the Biosynthetic Gene Clusters for Aminoglycoside Antibiotics

  • Jung Yong-Gyun;Jo You-Young;Hyun Chang-Gu;Lee In Hyung;Yang Young-Ye1l;Suh Joo-Won
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2001년도 추계학술대회
    • /
    • pp.146-156
    • /
    • 2001
  • The biosynthetic gene clusters for bluensomycin and spectinomycin were isolated and characterized from the bluensomycin producer, Streptomyces bluensis ATCC27420 and the spectinomycin producer, Streptomyces spectabilis ATCC27741, respectively. PCR primers were designed specifically to amplify a segment of dTDP-glucose synthase gene based on its conserved sequences of several actinomycete strains. By screening cosmid libraries using amplified PCR fragments, 30-kb and 45-kb DNA fragments were isolated from Streptomyces bluensis and Streptomyces spectabilis, respectively. Sequencing analysis of them revealed that each contains 15 open reading frames (ORFs). Some of these ORFs were turned out to be antibiotic resistance genes (blmA and speN), dTDP-glucose synthase genes (blmD and spcD), and dTDP-D-glucose 4,6-dehydratase genes (blmE and spcE), suggesting that the blm and spec gene clusters are likely involved in the biosynthesis of bluensomycin and spectinomycin, respectively.

  • PDF

대구지역 폐수처리장에서 분리한 cefotaxime-resistant Escherichia coli의 특성 (Characterization of cefotaxime-resistant Escherichia coli isolated from wastewater treatment plant in Daegu)

  • 김환득;박대현;이미리;김은정;조재근
    • 한국동물위생학회지
    • /
    • 제37권4호
    • /
    • pp.225-231
    • /
    • 2014
  • In this study, 185 cefotaxime-resistant Escherichia coli were isolated from different stages of a wastewater treatment plant (WWTP) in Daegu in Korea. Among them, 99.5% (184 isolates) originated from raw sewage and 0.5% (1 isolates) from the final effluent. Cefotaxime-resistant E. coli were high resistant to ampicillin, piperacillin, cefazolin, cephalothin, cefachlor and cefamandole (99.5~100%). About 93% of the cefotaxime-resistant E. coli were extended-spectrum ${\beta}$-lactamases (ESBL)-producing E. coli. The $bla_{TEM+CTX}$ gene was the most predominant of the ESBL genes (72.5%), followed by $bla_{CTX-M}$ (16.2%), $bla_{TEM}$ (8.7%), $bla_{TEM+CTX+SHV}$ (1.1%), $bla_{TEM+SHV}$, $bla_{TEM+OXA}$, and $bla_{TEM+CTX+SHV}$ (respectvely 0.5%). Class 1 and 2 integron were found in 49.7% and class 3 integron was not found. All of integron positive isolates were multiresistant (i.e. resistant to four or more antibiotics). Our findings showed WWTP is contaminated with antibiotic resistant bacteria with resistance genes.

서울시내 시판 식육에서 분리한 대장균의 퀴놀론계 항생제 내성 기전 분석 (Molecular Characterization of Quinolone Antibiotic Resistance in Escherichia coli Isolated from Retail Meat in Seoul)

  • 박지민;최성숙
    • 약학회지
    • /
    • 제60권1호
    • /
    • pp.1-7
    • /
    • 2016
  • The aim of this study was to investigate the prevalence of quinolone resistant E. coli from retail meat and to characterize the resistant determinants. Determination of minimum inhibitory concentration, the sequence analysis of gyrA, gyrB, parC, and parE quinolone resistance determining regions (QRDR), the presences of plasmid mediated quinolone resistance (PMQR) and the expression of efflux pump genes were investigated. Of the total 277 retail meat samples, 67 coli form bacteria were isolated. 15 of 67 isolates showed nalidixic acid resistance and 7 of 15 nalidixic acid resistant isolates were also resistant to ciprofloxacin, moxifloxacin and levofloxacin. 11 of 15 nalidixic acid resistant strains were isolated from chicken, 2 of 15 were isolated from beef and 2 of 15 were isolated from pork samples. 11 of 15 nalidixic acid resistant strains have single mutation at codon 87 (D87N or D87G) in gyrA, 2 of 11 gyrA mutants have double mutations at codon 86 and 87 (L86A and L87I) in parC with mutations at codon 434+445+465 or 429 in gyrB. 2 of 15 resistant isolates harbored qnrS, a PMQR determinant. Over expression of the acrB gene, efflux pump gene (3.93~16.53 fold), was observed in 10 of 15 resistant isolates.