• Title/Summary/Keyword: antibiotic production,

Search Result 462, Processing Time 0.025 seconds

Enterotoxin Production and DNA Fingerprinting of Staphylococcus aureus Isolated from Diverse Samples by Pulsed-Field Gel Electrophoresis

  • Suh, Dong-Kyun
    • Biomedical Science Letters
    • /
    • v.11 no.3
    • /
    • pp.295-299
    • /
    • 2005
  • Staphylococcus aureus is an important animal and human pathogen implicated in a variety of disease including food-poisoning caused by staphyloccal enterotoxins (SEs). In order to investigate the difference in genomic types and to monitor the transmission of S. aureus isolates, a total of 25 S. aureus isolates from different sources were determined for their genotypic characteristics by pulsed-field gel electrophoresis (PFGE) in addition to their ability to enterotoxin production and antibiotic resistance patterns in this study. All the isolates were susceptible to amikacin, and the resistance pattern to ampicillin and penicillin were most common among 14 different patterns. Eleven of 24 isolates produced one of three SEs, SEA, SEC or SED. Sixteen representative PFGE patterns were obtained by Smal restriction fragments of S. aureus isolates. Analysis of dendrogram based on PFGE band patterns suggested that food-poisoning outbreaks be caused by the diverse sources of food, of which their raw materials were infected with S. aureus. Also, it could be concluded that PFGE was a powerful tool for epidemiological tracing of infection source for food-initiated outbreaks.

  • PDF

Antimicrobial Peptides as Natural Antibiotic Materials (새로운 천연 항생물질로서의 항균 펩타이드)

  • Cha, Yeon-Kyung;Kim, Young-Soo;Choi, Yoo-Seong
    • KSBB Journal
    • /
    • v.27 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • Antimicrobial peptides are widely used in various organisms as a defense system against infection. The peptides are lethal towards bacteria and fungi, however have minimal toxicity in mammalian and plant cells. In this aspect, it is considered that antimicrobial peptides are new alternative materials for defensing against microbial infection. Here, we describe overall characteristics of antimicrobial peptides based on the mechanism of action, classification of the peptides, report detection/screening methods and chemical/biological production. It is expected that understanding of innate immune system based on antimicrobial peptides tends to develop novel natural antimicrobial agents, which might be applied for defensing pathogenic microorganisms resistant to conventional antibiotics.

Phytobiotics to improve health and production of broiler chickens: functions beyond the antioxidant activity

  • Kikusato, Motoi
    • Animal Bioscience
    • /
    • v.34 no.3_spc
    • /
    • pp.345-353
    • /
    • 2021
  • Phytobiotics, also known as phytochemicals or phytogenics, have a wide variety of biological activities and have recently emerged as alternatives to synthetic antibiotic growth promoters. Numerous studies have reported the growth-promoting effects of phytobiotics in chickens, but their precise mechanism of action is yet to be elucidated. Phytobiotics are traditionally known for their antioxidant activity. However, extensive investigations have shown that these compounds also have anti-inflammatory, antimicrobial, and transcription-modulating effects. Phytobiotics are non-nutritive constituents, and their bioavailability is low. Nonetheless, their beneficial effects have been observed in several tissues or organs. The health benefits of the ingestion of phytobiotics are attributed to their antioxidant activity. However, several studies have revealed that not all these benefits could be explained by the antioxidant effects alone. In this review, I focused on the bioavailability of phytobiotics and the possible mechanisms underlying their overall effects on intestinal barrier functions, inflammatory status, gut microbiota, systemic inflammation, and metabolism, rather than the specific effects of each compound. I also discuss the possible mechanisms by which phytobiotics contribute to growth promotion in chickens.

Optimization of Large Scale Culture Conditions of Bacillus ehimensis YJ-37 Antagonistic to Vegetables Damping-off Fungi (채소류 모잘록병균에 길항하는 Bacillus ehimensis YJ-37의 대량배양 최적조건)

  • 주길재;김진호
    • Journal of Life Science
    • /
    • v.12 no.3
    • /
    • pp.242-249
    • /
    • 2002
  • The optimal culture conditions in 500$m\ell$ flask suture, 5$\ell$ jar fermenter and 2,000 $\ell$ large stale culture were investigated to maximize the production of antibiotic on Rhizoctonia solani AC4, the causal agent of vegetables damping-off, by the strain Bacillus ehimensis YJ-37. Starch (1.5%) as a carbon source, peptone (0.6%) as a nitrogen source and MgC1$_2$(0.15%) as a metal ion in the medium containing N $a_2$HP $O_4$(0.3%) showed the highest production of the antibiotic(s) in a rotary shake (200 rpm). Optimal initial pH of the culture medium, culture temperature and culture time for the antibiotic(s) production were pH 8.0, 32$^{\circ}C$ and 54hrs, respertively. Under the optimal renditions in flask culture, cell growth and antifungal activity (clear zone size) were 1.42 $\times$ 10$^{8}$ cfu/$m\ell$ (21g-DCW/ $\ell$) and 13.9 mm, respectively. In 5 $\ell$ jar fermenter (medium 3 $\ell$), optimal air flow, agitation speed and culture time for the antibiotic(s) production were 2 vvm, 200 rpm and 48hrs, respectively. Under the optimal conditions in 5 $\ell$ jar fermenter, tell growth and antifungal activity were 2.06 $\times$ 10$^{8}$ cfu/$m\ell$ (30g-DCW/ $\ell$) and 13.4 mm, respectively. Under the culture conditions of air flow (30 vvm) and agitation speed (200 rpm) at 32$^{\circ}C$ for 10 days in 2,000 $\ell$ large scale culture (medium 1,800 $\ell$, pH 8.0), cell growth and antifungal activity were 0.81$\times$10$^{8}$ cfu/$m\ell$ (12g-DCW/ $\ell$) and 8.6 mm, respectively.

Axenic Culture Production and Growth of a Dinoflagellate, Cochlodinium polykrikoides (적조 와편모조류, Cochlodinium polykrikoides의 순수분리 및 성장)

  • SEO Pil-Soo;LEE Sang-Jun;Kim Yoon;LEE Jeong-Ho;KIM Hak-Gyoon;LEE Jae-Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.1
    • /
    • pp.71-76
    • /
    • 1998
  • To know the antibiotic specificity of a Dinoflagellate, Cochlodinium polykrikoides, we investigated the survival time of C. polykrikoides against several concentrations of antibiotics and judged the selective specificity of antibiotics based on the $LT_50$ ($50\%$ of lethal time). The result showed that C. polykrikoides was sensitive to tetracycline and chloramphenicol, and resistant to polymixin-B, ampicillin, penicillin-G, dihydrostreptomycin, and neomycin. In the case of sensitive antibiotics to C. polykrikoides, tetracycline and chloramphenicol, the safety concentrations of both antibiotics were determined and the antibiotic specificity based or the plotted survival curve was analyzed. Before antibiotic treatment, we tested the antibiotic susceptibility of the contaminated bacterial population in tile culture of C. polykrikoides, and decided the proper kinds of antibiotics and concentrations before percoll-centrifugation. By percoll-centrifugation, we reduced bacteria, removed fungi, collected the algal pellet, and made axonic culture by antibiotic cascade procedure based on the result of antibiotic susceptibility test. We observed that axonic C. polykrikoides culture entered the logarthmic phase of growth when cell density was over 740 cells/ml and propagated to 5,800 cells/ml maximally. Divisions per day, k value of C. polykrikoides represented a good index for growth at the low density of cells. There was a highest k value shift before reaching to the logarithmic phase. We suggested that the preceeding highest k value shift stage is a good indicator for accurate broadcasting for red. tide blooming in the field, and the stage is also a good time for controlling red tide blooming in the filed, either.

  • PDF

Ampicillin treated German cockroach extract leads to reduced inflammation in human lung cells and a mouse model of Asthma

  • Seogwon Lee;Myung-Hee Yi;Yun Soo Jang;Jun Ho Choi;Myungjun Kim;Soo Lim Kim;Tai-Soon Yong;Ju Yeong Kim
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.1
    • /
    • pp.60-71
    • /
    • 2023
  • Cockroaches can cause allergic sensitization in humans via contact with their feces or frass. Antibiotics can affect concentration of major allergen and total bacteria production in German cockroaches (Blattella germanica). This study examined the ability of antibiotic-treated German cockroaches to induce allergic airway inflammation and the effect of antibiotics on their lipopolysaccharide and Bla g1, 2, and 5 expression levels. Specifically, we measured the ability of German cockroach extract (with or without prior antibiotic exposure) to induce allergic inflammation in human bronchial epithelial cells and a mouse model of asthma. Bacterial 16S rRNA and lipopolysaccharide levels were lower in ampicillin-treated cockroaches than in the control group. The Bla g1, Bla g2, and Bla g5 expression in ampicillin-treated cockroaches decreased at both the protein and RNA levels. In human bronchial epithelial cell lines BEAS-2B exposed to the ampicillin-treated extract, expression levels of interleukin-6 and interleukin-8 were lower than that in the control group. The total cell count and eosinophil count in bronchoalveolar lavage fluid was also lower in mice exposed to the ampicillin-treated extract than in those exposed to normal cockroach extract. Mouse lung histopathology showed reduced immune cell infiltration and mucus production in the ampicillin group. Our results showed that ampicillin treatment reduced the symbiont bacterial population and major allergen levels in German cockroaches, leading to reduced airway inflammation in mice. These results can facilitate the preparation of protein extracts for immunotherapy or diagnostics applications.

Technical requirements for cultured meat production: a review

  • Ramani, Sivasubramanian;Ko, Deunsol;Kim, Bosung;Cho, Changjun;Kim, Woosang;Jo, Cheorun;Lee, Chang-Kyu;Kang, Jungsun;Hur, Sunjin;Park, Sungkwon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.681-692
    • /
    • 2021
  • Environment, food, and disease have a selective force on the present and future as well as our genome. Adaptation of livestock and the environmental nexus, including forest encroachment for anthropological needs, has been proven to cause emerging infectious diseases. Further, these demand changes in meat production and market systems. Meat is a reliable source of protein, with a majority of the world population consumes meat. To meet the increasing demands of meat production as well as address issues, such as current environmental pollution, animal welfare, and outbreaks, cellular agriculture has emerged as one of the next industrial revolutions. Lab grown meat or cell cultured meat is a promising way to pursue this; however, it still needs to resemble traditional meat and be assured safety for human consumption. Further, to mimic the palatability of traditional meat, the process of cultured meat production starts from skeletal muscle progenitor cells isolated from animals that proliferate and differentiate into skeletal muscle using cell culture techniques. Due to several lacunae in the current approaches, production of muscle replicas is not possible yet. Our review shows that constant research in this field will resolve the existing constraints and enable successful cultured meat production in the near future. Therefore, production of cultured meat is a better solution that looks after environmental issues, spread of outbreaks, antibiotic resistance through the zoonotic spread, food and economic crises.

Optimal pH Profile in Rifamycin B Fermentation (리파마이신B 발효생산의 최대화를 위한 pH변화의 최적화)

  • Lee, J.G.;Choi, C.Y.;Seong, B.L.;Han, M.H.
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.4
    • /
    • pp.225-230
    • /
    • 1981
  • The kinetic study of rifamycin B production in batch culture of Nocardia mediterranei was undertaken in part of our endeavor to optimize the fermentation condition. The growth parameters such as $\mu$$_{m}$ and Ks values for nitrogen source were evaluated by employing Monod equation. From the experiments, $\mu$$_{m}$ and Ks were 0.15hr$^{-1}$ and 8.35g/1, respectively. The growth kinetics in batch culture was found successfully interpreted by logistic law, i.e., the initial specific growth rate and the maximum cell mass concentration were determined as function of pH and both found to have maxima. For the production of rifamycin B, a non-growth associated production kinetics was employed and the specific productivity as a function of pH was found to have two maximum points. The yield coefficient and the specific productivity were calculated as mean values in production phase. Utilizing these experimental data as a function of pH, the optimal condition for the rifamycin B production was discussed with regad to the pH effect on the cell growth and production of the antibiotic. As a result, growth phase at pH 6.5 and production phase at pH 7.0 were found to be recommended.ded.

  • PDF

Effects of Green Tea Polyphenols and Fructo-oligosaccharides in Semi-purified Diets on Broilers' Performance and Caecal Microflora and Their Metabolites

  • Cao, B.H.;Karasawa, Y.;Guo, Y.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.1
    • /
    • pp.85-89
    • /
    • 2005
  • This study was conducted to examine the effects of green tea polyphenols (GTP) and fructo-oligosaccharides (FOS) supplement on performance, counts of caecal microflora and its metabolites production. In female broiler chickens fed on semi-purified diets from 28 to 42 d of age, dietary green tea polyphenols (GTP) and fructo-oligosaccharides (FOS) significantly reduced mortality (p<0.05). Dietary GTP significantly decreased the total count of caecal microflora, each colonic population count and caecal flora metabolites contents when compared to other groups (p<0.05). Dietary FOS did not influence the total count of caecal flora but it selectively increased Bifidobacteri and Eubacteria counts (p<0.05) and decreased the count of other microflora and concentrations of caecal phenols and indole (p<0.0.5). These results suggest that GTP and FOS in semi-purified diets can decrease mortality and change the caecal colonic flora population, but GTP shows antibiotic-like effects of non-selectively decreasing all colonic flora and then metabolites, and FOS acts selectively by increasing profitable microflora and decreasing production of caecal microflora metabolites besides volatile fatty acids.

Characteristics of Bacteriocin and Mucin Production Phenotypes in Lactobacillus plantarum 27

  • Kim, Wang-Jung;Ha, Duk-Mo;Ray, Bibek
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.96-101
    • /
    • 1991
  • Phenotypic changes after plasmid curing experiment suggested that the bacteriocin production phenotype ($Bac^{+}$) might be linked to a chromosomal DNA and the mucin production phenotype ($Muc^{+}$) might be linked to a 62.5 kilobase (kb) plasmid (pMUC62) in Lactobacillus plantarum 27 isolated from meat starter culture. The non-mucoid ($Muc^{-}$) variants were missing pMUC62 but they produced bacteriocin as the wild strain ($Bac^{+}$). There was no difference in antibiotic resistance and sugar fermentation patterns between the wild strain ($Bac^{+}$ $Muc^{+}$) and the nonmucoid ($Bac^{+}$ $Muc^{-}$) variants. Antimicrobial spectrum of bacteriocin produced by both wild strain and $Muc^{-}$ variant of Lb. plantarum 27 included strains of Pediococcus acidilactici (A, M, H), Pediococcus sp. isolated from meat, Lactobacillus sp. isolated from meat, Lb. plantarum NCDO 955 and Staphylococcus aureus 485. Neither of the tested Gram negative bacteria were inhibited by bacteriocin. Antimicrobial activity of crude bacteriocin was retained after autoclaving, DNase or catalase treatment and exposure from pHs 4 to 9 but was lost after treating with several proteolytic enzymes and exposure at pH 10.

  • PDF