DOI QR코드

DOI QR Code

Antimicrobial Peptides as Natural Antibiotic Materials

새로운 천연 항생물질로서의 항균 펩타이드

  • Received : 2012.02.06
  • Accepted : 2012.02.25
  • Published : 2012.02.29

Abstract

Antimicrobial peptides are widely used in various organisms as a defense system against infection. The peptides are lethal towards bacteria and fungi, however have minimal toxicity in mammalian and plant cells. In this aspect, it is considered that antimicrobial peptides are new alternative materials for defensing against microbial infection. Here, we describe overall characteristics of antimicrobial peptides based on the mechanism of action, classification of the peptides, report detection/screening methods and chemical/biological production. It is expected that understanding of innate immune system based on antimicrobial peptides tends to develop novel natural antimicrobial agents, which might be applied for defensing pathogenic microorganisms resistant to conventional antibiotics.

Keywords

References

  1. Kiss, G. and H. Michl (1962) On the venomous skin secretion of the orange speckled frog Bombina variegata. Toxicon 1: 33-39. https://doi.org/10.1016/0041-0101(62)90006-5
  2. Csordas, A. and H. Michl (1970) Isolation and structure of a haemolytic polypeptide from the defensive secretion of european Bombina species. Monatsh Chem. 101: 182-189. https://doi.org/10.1007/BF00907538
  3. Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415: 389-395. https://doi.org/10.1038/415389a
  4. Matsuzaki, K. (1999) Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim. Biophys. Acta 1462: 1-10. https://doi.org/10.1016/S0005-2736(99)00197-2
  5. Huang, H. W. (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39: 8347-8352. https://doi.org/10.1021/bi000946l
  6. Shai, Y. (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta 1462: 55-70. https://doi.org/10.1016/S0005-2736(99)00200-X
  7. Yang, L., T. M. Weiss, R. I. Lehrer, and H. W. Huang (2000) Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys. J. 79: 2002-2009. https://doi.org/10.1016/S0006-3495(00)76448-4
  8. Gillor, O., A. Etzion, and M. A. Riley (2008) The dual role of bacteriocins as anti- and probiotics. Appl. Microbiol. Biotechnol. 81: 591-606. https://doi.org/10.1007/s00253-008-1726-5
  9. Duquesne, S., D. Destoumieux-Garzon, J. Peduzzi, and S. Rebuffat (2007) Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat. Prod. Rep. 24: 708-734. https://doi.org/10.1039/b516237h
  10. Nagao, J. I., S. M. Asaduzzaman, Y. Aso, K. Okuda, J. Nakayama, and K. Sonomoto (2006) Lantibiotics: Insight and foresight for new paradigm. J. Biosci. Bioeng. 102: 139-149. https://doi.org/10.1263/jbb.102.139
  11. Inqham, A. B. and R. J. Moore (2007) Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechnol. Appl. Biochem. 47: 1-9. https://doi.org/10.1042/BA20060207
  12. Li, Y. (2011) Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr. Purif. 80: 260-267. https://doi.org/10.1016/j.pep.2011.08.001
  13. Fjell, C. D., J. A. Hiss, R. E. Hancock, and G. Schneider (2011) Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov. 11: 37-51.
  14. Lee, I. H. (2000) Antimicrobial peptides in innate immnne System. Biowave 2: Sub. No. 7.
  15. Hultmark, D., A. Engstrom, H. Bennich, R. Kapur, and H. G. Boman (1982) Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur. J. Biochem. 127: 207-217. https://doi.org/10.1111/j.1432-1033.1982.tb06857.x
  16. Lee, J. Y., A. Boman, C. X. Sun, M. Andersson, H. Jornvall, V. Mutt, and H. G. Boman (1989) Antibacterial peptides from pig intestine: isolation of a mammalian cecropin. Proc. Natl. Acad. Sci. USA. 86: 9159-9162. https://doi.org/10.1073/pnas.86.23.9159
  17. Boman, H. G. (1991) Antibacterial peptides: key components needed in immunity. Cell 65: 205-207. https://doi.org/10.1016/0092-8674(91)90154-Q
  18. Bhunia, A. K., M. C. Johnson, and B. Ray (1988) Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici. J. Appl. Bacteriol. 65: 261-268. https://doi.org/10.1111/j.1365-2672.1988.tb01893.x
  19. Barefoot, S. F. and T. R. Klaenhammer (1983) Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl. Environ. Microbiol. 45: 1808-1815.
  20. Kolusheva, S., T. Shahal, and R. Jelinek (2000) Peptide-membrane interactions studied by a new phospholipid/polydiacetylene colorimetric vesicle assay. Biochemistry 39: 15851-15859. https://doi.org/10.1021/bi000570b
  21. Kolusheva, S., L. Boyer, and R. Jelinek (2000) A colorimetric assay for rapid screening of antimicrobial peptides. Nat. Biotechnol. 18: 225-227. https://doi.org/10.1038/72697
  22. Kim, Y. S. and H. J. Cha (2006) High-throughput and facile assay of antimicrobial peptides using pH-controlled fluorescence resonance energy transfer. Antimicrob. Agents Chemother. 50: 3330-3335. https://doi.org/10.1128/AAC.00455-06
  23. Kent, S. B. (1988) Chemical synthesis of peptides and proteins. Annu. Rev. Biochem. 57: 957-989. https://doi.org/10.1146/annurev.bi.57.070188.004521
  24. Barany, G., N. Kneib-Cordonier, and D. G. Mullen (1987) Solid-phase peptide synthesis: a silver anniversary report. Int. J. Pept. Protein Res. 30: 705-739.
  25. Wei, Q., Y. S. Kim, J. H. Seo, W. S. Jang, I. H. Lee, and H. J. Cha (2005) Facilitation of expression and purification of an antimicrobial peptide by fusion with baculoviral polyhedrin in Escherichia coli. Appl. Environ. Microbiol. 71: 5038-5043. https://doi.org/10.1128/AEM.71.9.5038-5043.2005
  26. Morassutti, C., F. De Amicis, B. Skerlavaj, M. Zanetti, and S. Marchetti (2002) Production of a recombinant antimicrobial peptide in transgenic plants using a modified VMA intein expression system. FEBS Lett. 519: 141-146. https://doi.org/10.1016/S0014-5793(02)02741-2
  27. Andreu, D. and L. Rivas (1998) Animal antimicrobial peptides: an overview. Biopolymers 47: 415-433. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<415::AID-BIP2>3.0.CO;2-D
  28. Gesell, J., M. Zasloff, and S. J. Opella (1997) Two-dimensional 1 H NMR experiments show that the 23-residue magainin antibiotic peptide is an alpha-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J. Biomol. NMR 9: 127-135. https://doi.org/10.1023/A:1018698002314
  29. Holak, T. A., A. Engstrom, P. J. Kraulis, G. Lindeberg, H. Bennich, T. A. Jones, A. M. Gronenborn, and G. M. Clore (1988) The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry 27: 7620-7629. https://doi.org/10.1021/bi00420a008
  30. Sipos, D., M. Andersson, and A. Ehrenberg (1992) The structure of the mammalian antibacterial peptide cecropin P1 in solution, determined by proton-NMR. Eur. J. Biochem. 209: 163-169. https://doi.org/10.1111/j.1432-1033.1992.tb17273.x
  31. Yi, G. S., C. B. Park, S. C. Kim, and C. Cheong (1996) Solution structure of an antimicrobial peptide buforin II. FEBS Lett. 398: 87-90. https://doi.org/10.1016/S0014-5793(96)01193-3
  32. Scocchi, M., D. Romeo, and M. Zanetti (1994) Molecular cloning of Bac7, a proline- and arginine-rich antimicrobial peptide from bovine neutrophils. FEBS Lett. 352: 197-200. https://doi.org/10.1016/0014-5793(94)00954-6
  33. Agerberth, B., J. Y. Lee, T. Bergman, M. Carlquist, H. G. Boman, V. Mutt, and H. Jornvall (1991) Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur. J. Biochem. 202: 849-854. https://doi.org/10.1111/j.1432-1033.1991.tb16442.x
  34. Selsted, M. E., M. J. Novotny, W. L. Morris, Y. Q. Tang, W. Smith, and J. S. Cullor (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J. Biol. Chem. 267: 4292-4295.
  35. Romeo, D., B. Skerlavaj, M. Bolognesi, and R. Gennaro (1988) Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J. Biol. Chem. 263: 9573-9575.
  36. Conlon, J. M., T. Halverson, J. Dulka, J. E. Platz, and F. C. Knoop (1999) Peptides with antimicrobial activity of the brevinin-1 family isolated from skin secretions of the southern leopard frog, Rana sphenocephala. J. Pept. Res. 54: 522-527. https://doi.org/10.1034/j.1399-3011.1999.00123.x
  37. Clark, D. P., S. Durell, W. L. Maloy, and M. Zasloff (1994) Ranalexin. A novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin. J. Biol. Chem. 269: 10849-10855.
  38. Pardi, A., X. L. Zhang, M. E. Selsted, J. J. Skalicky, and P. F. Yip (1992) NMR studies of defensin antimicrobial peptides. 2. Three-dimensional structures of rabbit NP-2 and human HNP-1. Biochemistry 31: 11357-11364. https://doi.org/10.1021/bi00161a013
  39. Zimmermann, G. R., P. Legault, M. E. Selsted, and A. Pardi (1995) Solution structure of bovine neutrophil beta-defensin-12: the peptide fold of the beta-defensins is identical to that of the classical defensins. Biochemistry 34: 13663-13671. https://doi.org/10.1021/bi00041a048
  40. Fahrner, R. L., T. Dieckmann, S. S. Harwig, R. I. Lehrer, D. Eisenberg, and J. Feigon (1996) Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chem. Biol. 3: 543-550. https://doi.org/10.1016/S1074-5521(96)90145-3