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Phytobiotics to improve health and production of broiler chickens: 
functions beyond the antioxidant activity 

Motoi Kikusato1,*

Abstract: Phytobiotics, also known as phytochemicals or phytogenics, have a wide variety 
of biological activities and have recently emerged as alternatives to synthetic antibiotic growth 
promoters. Numerous studies have reported the growth-promoting effects of phytobiotics 
in chickens, but their precise mechanism of action is yet to be elucidated. Phytobiotics are 
traditionally known for their antioxidant activity. However, extensive investigations have 
shown that these compounds also have anti-inflammatory, antimicrobial, and transcription-
modulating effects. Phytobiotics are non-nutritive constituents, and their bioavailability is 
low. Nonetheless, their beneficial effects have been observed in several tissues or organs. 
The health benefits of the ingestion of phytobiotics are attributed to their antioxidant activity. 
However, several studies have revealed that not all these benefits could be explained by the 
antioxidant effects alone. In this review, I focused on the bioavailability of phytobiotics and 
the possible mechanisms underlying their overall effects on intestinal barrier functions, 
inflammatory status, gut microbiota, systemic inflammation, and metabolism, rather than 
the specific effects of each compound. I also discuss the possible mechanisms by which 
phytobiotics contribute to growth promotion in chickens. 
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INTRODUCTION 

What are phytobiotics? 
Phytobiotics, also referred to as phytochemicals or phytogenics, are a broad subset of plant-
derived bioactive compounds. Thus far, more than 5,000 individual dietary phytobiotics 
have been identified in fruits, vegetables, whole grains, legumes, nuts, herbs, and essential 
oils [1]. Phytobiotics have also been defined as non-nutritive compounds and are therefore 
distinguished from the nutrients found in plants, such as vitamins and minerals. Phytobiotics 
can be divided into the following six categories: phenolic compounds, alkaloids, nitrogen-
containing compounds, organosulfur compounds, phytosterols, and carotenoids, and 
they are further divided into several subcategories [1]. There have been several investiga-
tions on phenolic compounds and carotenoids to determine their biological effects and 
characteristics [2-5]. 
  Phytobiotics are synthesized by plants to offer protection against invasive pathogens 
such as bacteria, viruses, and fungi. They also protect DNA and photosynthetic apparatus 
from oxidative damage in plants caused by ultraviolet radiation. Oxidative stress occurs 
when the formation of reactive oxygen species (ROS) exceeds the cellular antioxidant ca-
pacity, which is regulated by antioxidant enzymes, such as superoxide dismutase (SOD), 
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catalase (CAT), and glutathione peroxidase; low-molecular 
constituents such as tocopherols, ascorbic acid, uric acid, im-
idazole dipeptides, and bilirubin; proteins that chelate free 
transition metals; ovotransferrin; and ceruloplasmin. The 
antioxidant activity of phytobiotics, especially phenolic acids 
and flavonoids, is predominantly determined by the struc-
ture and electron delocalization over an aromatic nucleus 
[6]. It has also been proposed that polyphenolic compounds 
exhibit antioxidant effects through a variety of mechanisms, 
rather than the single mode of action of typical synthetic an-
tioxidants [7,8]. The beneficial effects of phytobiotics are 
considered to be due to their antioxidant properties. How-
ever, several studies have demonstrated that the antioxidant 
properties alone cannot explain these benefits [9,10]. In this 
regard, the concentration of phytobiotics and their metabo-
lites detected in the plasma and tissues after gavage has been 
found to be more than 50-fold lower than that of endoge-
nous antioxidants, such as uric acid and bilirubin [11]. 
  In the last two decades, phytobiotics have been shown to 
exert multiple effects, including anti-inflammatory, antimi-
crobial, anti-oxidative, and metabolic-modulating effects 
[10,12,13]. Phytobiotics are used for promoting growth and 
improving meat and egg quality in poultry production [14-
17]. Moreover, as antimicrobial/antibiotic growth promoters 
(AGPs) have been gradually eliminated from animal produc-
tion owing to the increased risk of occurrence of antimicrobial 
resistance, the use of phytobiotics as an alternative to AGPs 
has been extended to farm animals for improving their in-
testinal status and subsequently promoting growth [18,19]. 
A few reviews have suggested the possible mechanisms by 
which phytobiotics lead to health benefits and growth promo-
tion [20,21]. In this review, I focused on the bioavailability of 
phytobiotics and the possible mechanisms underlying their 
overall effects on intestinal barrier functions, inflammatory 
status, gut microbiota, systemic inflammation, and metabo-
lism, rather than the specific effects of each compound. I also 
discuss the possible mechanisms by which phytobiotics con-
tribute to growth promotion in chickens. We entirely used 
data from studies using laboratory mammals or cell culture, 
as there are a limited number of studies on the precise mecha-
nism of phytobiotics in chickens. Nevertheless, I believe that 
this paper will contribute to further our understanding of the 
precise mechanism of the effects of phytobiotics. 

BIOAVAILABILITY

Bioavailability is the fraction (%) of an administered com-
pound/drug that reaches the systemic circulation following 
ingestion into the gastrointestinal tract. The concentration of 
phytobiotics and their metabolites in the blood and tissues is 
very low; only 2% to 15% of phytobiotic compounds can be 
absorbed in the small intestine [22,23]. Low absorption, bio-

transformation, and rapid excretion/clearance may lead to 
the low bioavailability of phytobiotics; this has been sum-
marized in the review by Gessner et al [24]. First, most 
phytobiotics, especially polyphenols, form esters, glycosides, 
or polymers. For absorption in the small intestine, polyphe-
nols have to be hydrolyzed to aglycones by either intestinal 
enzymes (lactase-phlorizin hydrolase and β-glucosidase) or 
microbial enzymes, as only the aglycone or glycoside forms 
of polyphenols can be absorbed in the small intestine [25, 
26]. Second, phytobiotics have to be released from the plant 
matrix if they are administered as dry powder of plant parts, 
such as leaves, stems, and roots. However, this process may be 
limited by the lack of specific enzymes and a limited number 
of microbial enzymes in the intestine. Third, the phytobiotics 
and their metabolites are rapidly degraded within 2 to 12 h 
following absorption [22]. The absorbed phytobiotics are 
recognized as xenobiotics by the biotransformation system 
and undergo modifications, such as methylation, glucuroni-
dation, and sulfation, in enterocytes and the liver [27,28]. 
These modifications render the phytobiotics water-soluble 
and allow their excretion in urine [29]. Fourth, the delivery 
of phytobiotics to the target tissues may be dependent on 
their binding affinity to albumin in the blood, which is 
based on the chemical structure of the phytobiotics [30,31]. 
This factor also influences the rate of clearance of phytobi-
otics from the blood. Moreover, it has been reported that 
long-term supplementation of polyphenols does not lead 
to their accumulation in plasma and tissues compared with 
single administration [32]. Several studies have investigated 
the bioavailability of phytobiotics in chickens. It has been 
reported that isoquinoline alkaloids, sanguinarine and dihy-
drosanguinarine, were found in the plasma at a concentration 
of 1 to 2 ng/mL between 5 min and 5 h post-treatment in 
broiler chickens orally administered Sangrovit (20 mg/kg) 
[33]. It has also been reported that quercetin and its me-
tabolites were detected in plasma at a concentration of 0.04 
to 0.14 ng/mL; however, the antioxidant capacity did not 
change in broiler chickens [34]. 

INTESTINAL BARRIER FUNCTION AND GUT 
MICROBIOTA

These findings raise one important question, that is, how do 
phytobiotics lead to health benefits in animals when they 
have such a low bioavailability? Growing evidence suggests 
that phytobiotics may not have to be absorbed to exert their 
beneficial effects [35]. One study postulated that the non-
absorbed fraction of phytobiotics may promote intestinal 
function or act as prebiotics [10]. The intestinal barrier sys-
tem consists of several components, including, the mucus 
layer, immunoglobulin A, antibacterial peptides, and inter-
cellular tight junctions (TJ) [36]. The mucosal layer plays 
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an important role in the first line of defense against patho-
gen and toxin invasion in the gastrointestinal tract [37,38]. 
TJs are multiprotein junctional complexes of transmembrane 
proteins, such as claudin, occludin, and junctional adhesion 
molecule-A (JAM-A) and intracellular plaque proteins, such 
as zonula occludens (ZO). The gaps between the extracellular 
regions of the transmembrane proteins in the adjacent cells 
are involved in the paracellular passage of molecules in the 
intestinal lumen. Once the mucus layer and TJ barriers in 
the small intestine are destroyed, often by heat and over-
crowding stress, glucocorticoid challenge, or high-fat diet 
[39-43], systemic and intestinal inflammation occurs, thereby 
triggering various chronic diseases through pathogen inva-
sion [44]. 
  Resveratrol, which is found in grapes, berries, peanuts, 
and red wine, is a well-known polyphenol, and extensive re-
search has been conducted on this compound. Resveratrol 
supplementation has been reported to restore ZO-2, occludin, 
JAM-A, and claudin expression and to mitigate the increase 
in the level of plasma lipopolysaccharide (LPS)-binding 
protein, which is an indicator of intestinal barrier impair-
ment [45]. One study using heat-stressed broiler chickens 
showed that resveratrol improved intestinal barrier function 
and mRNA expression of mucin-2, claudin-1, occludin, and 
E-cadherin [46]; attenuated nuclear factor-kappa B (NF-κB) 
protein expression; and induced the expression of epidermal 
growth factor mRNA in the intestine [47]. Another poly-
phenol, quercetin, which is found in onion, kale, and apples, 
also enhances intestinal barrier integrity by upregulating the 
level of claudin-4 [48], and by promoting the assembly of TJ 
proteins, ZO-2, occludin, and claudin-1 [49]. Naringenin is 
a flavanone that is rich in citrus fruits, and it increases the 
expression of occludin, JAM-A, and claudin-3 [50]. More-
over, it has been reported that a metabolite of phytobiotics 
produced by the gut microbiota is involved in intestinal bar-
rier function. Urolithin A is a metabolite produced from 
ellagitannins and ellagic acid found in berries, grapes, and 
walnuts. It improves intestinal barrier integrity by inducing 
the expression of the TJ proteins, such as claudin-4, occlu-
din, and ZO-1, via the activation of the aryl hydrocarbon 
receptor (AhR), and subsequently increasing binding to AhR 
nuclear factor erythroid 2–related factor 2 (Nrf2) in intestinal 
epithelial cells [51]. There is little information on the effects 
of polyphenols on the mucus layer, and one study has shown 
that grape pomace concentrate improves the villus height-to-
crypt depth ratio, but does not affect the ileal mucin content 
[52]. In addition, the concentration of sialic acid, a constituent 
of mucin, decreased in broiler chickens fed grape extracts 
[53], which contain procyanidins as the main ingredient. 
  The effects of phytobiotics on the gut microbiota have also 
been extensively investigated, due to the importance of mi-
crobiota in the health and productivity of farm animals. The 

gut microbiota composition can affect growth parameters, 
such as growth rate, by influencing feed digestion and nutri-
ent adsorption. The relationship between microbes, such as 
Campylobacter, Escherichia coli, Lactobacilli, and Enterobac-
teria, and the production performance has been extensively 
investigated (for more information, see the review by Iqbal 
et al [54]); however, this relationship has not yet been fully 
elucidated. It has been suggested that gut microbes metabo-
lize phytobiotics into simpler metabolites to transform them 
into absorbable metabolites, whereas phytobiotics affect the 
population of gut microbes by interfering with their metabolic 
activities [54]. The transformation into simpler metabolites 
increases bioavailability and enhances the health-promoting 
effects in the intestine. Meanwhile, the prebiotic-like effects 
of phytobiotics suppress pathogenic bacteria, and this in 
turn improves the intestinal immune status and positively 
affects the population of beneficial bacteria. Several inves-
tigations on chickens have demonstrated the beneficial effects 
of plant constituents on the intestinal microbiota [46,52, 
55,56]. 

INTESTINAL AND SYSTEMIC 
INFLAMMATION

The intestinal epithelial barrier defends against the translo-
cation of pathogenic bacteria and their harmful constituents 
into the circulation. The epithelial and immune cells present 
in the lamina propria recognize external substances, and they 
are activated to produce cytokines and other bioactive com-
pounds to reinforce and restore the intestinal barrier. However, 
excessive protective responses may induce inflammation, 
resulting in barrier dysfunction. The NF-κB plays a key role 
in regulating inflammatory status. It is a transcriptional fac-
tor that is normally bound in an inactive state by inhibitory 
proteins in the cytosol. The release of NF-κB due to this in-
hibition is triggered by stimulation with cytokines, bacterial 
stimuli, and oxidants. This conformational change activates 
NF-κB for translocation into the nucleus, where it initiates 
the transcription of several genes involved in inflammation, 
including inflammatory cytokines, chemokines, inflamma-
tory enzymes, adhesion molecules, and receptors (for more 
details see the review by Huang and Lee [57]). Mitogen-acti-
vated protein kinases (MAPKs) are a group of protein kinases 
that regulate cellular activities and activate another tran-
scriptional factor, activator protein-1, which also induces 
the transcription of inflammatory genes [58]. Activated 
immune cells located near the epithelial cells secrete inflam-
matory cytokines, such as interleukin-6 (IL-6), interferon-γ, 
tumor necrosis factor-α (TNF-α), and inflammatory en-
zymes, such as inducible nitric oxide and cyclooxygenase. 
They cause the inflammation of intestinal epithelial cells 
and subsequently disrupt the intestinal barrier [59]. 
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  Phytobiotics may affect intestinal barrier functions, by not 
only upregulating the expression of the TJ proteins, but also 
influencing the intracellular signaling pathways inducing 
cytokine production [57,60]. Toll like receptors (TLRs) and 
nucleotide-binding oligomerization (NODs) are two primary 
targets of phytobiotics, and they can be activated by phyto-
biotics to inhibit the inflammation cascade. For example, it 
has been reported that curcumin inhibits TLR4 and NOD, 
whereas isothiocyanate inhibits TLR4 [61,62]. Resveratrol, 
epigallocatechin gallate, and quercetin do not inhibit TLR 
activation, but can suppress TLR4-mediated signal trans-
duction by inhibiting TANK binding kinase 1 (TBK1), a 
kinase required for cytokine expression [63]. Moreover, Huang 
and Lee [57] proposed that carvacrol, curcumin, cinnam-
aldehyde, and thymol may inhibit or modulate the NF-κB 
and/or MAPK signaling pathways to mitigate inflammatory 
cascades, although their specific targets have not been iden-
tified. The detailed mechanisms governing the ameliorative 
effects of phytobiotics on inflammation have to be investi-
gated in chickens. 
  LPS originating from the cell wall of gram-negative bac-
teria is an immune-stimulator that translocates into the 
circulation. It has negative effects on metabolism, physiology, 
and immunity. Abdominal or intravenous LPS injection 
has been extensively used as a non-microbial experimental 
model to investigate the effects of infection on metabolic 
dysfunction. LPS-stimulated inflammatory cytokine secre-
tion induces oxidative stress, hepatic acute phase protein 
(APP) production, glucocorticoid secretion, muscle protein 
catabolism, and anorexia [64-68]. These symptoms alone 
or in combination induce growth retardation, anorexia, high 
mortality, and an increase in the feed conversion ratio (FCR). 
Chickens subjected to LPS challenge also showed an increase 
in the ratio of liver, spleen, and intestine weight to body weight 
[69]. Inflammation triggers alterations in metabolism that 
support the immune system, often involving the acceleration 
of skeletal muscle protein degradation. Cytokines such as IL-1, 
IL-6, TNF-α, and glucocorticoids participate in muscle pro-
teolysis [70]. Gessner et al [24] proposed that amino acids 
donated from the degradation of muscle proteins and inhibi-
tion of muscle protein synthesis are used for APP synthesis 
and gluconeogenesis as energy fuel in the liver to counteract 
inflammation. The generation of these metabolites has been 
proposed as a metabolic cost [71,72]. If phytobiotics and their 
metabolites mitigate inflammatory status and subsequent 
protein degradation, amino acid utilization for such protein 
synthesis would no longer be necessary and normal muscle 
growth may progress. This could be one of the mechanisms 
that promote the growth performance of animals. 

Nrf2 PATHWAY AND DETOXIFYING SYSTEM

Phytobiotics have been traditionally viewed as antioxidants, 
and recently, it has been suggested that these compounds 
contribute to eliminating ROS, by not only direct antioxi-
dant action, but also inducing the expression of antioxidant 
enzymes [73]. Nrf2 is a transcriptional factor that regulates 
the expression of antioxidant enzymes and proteins to pro-
tect cells against oxidative damage triggered by injury and 
inflammation [74]. Quercetin and resveratrol have been found 
to activate the Nrf2 pathway and induce the expression of 
ROS scavengers SOD and CAT [75]. In broiler chickens, LPS-
induced intestinal oxidative stress was attenuated by quercetin 
via the activation of the Nrf2 pathway [76]. The activation of 
Nrf2 also inhibits NF-κB [75] and promotes the expression 
of peptide transporter 1 in intestinal cells [77]. It has also been 
shown that antagonistic crosstalk between sirtuin-1 (SIRT1) 
and NF-κB in the regulation of inflammation and metabolic 
disorders [78]. Several studies have proposed that polyphe-
nols may protect against inflammation and metabolic diseases 
by enhancing the SIRT1 deacetylase activity [79]. Resvera-
trol was the first phenolic compound to activate SIRT1 [80]. 
However, this finding has been debated, and recent studies 
have shown that resveratrol is not a specific activator of SIRT1 
[81]. These findings suggest that the Nrf2 pathway plays a 
role in the ameliorative effect of phytobiotics. 
  Phytobiotics are metabolized and excreted into the bile 
and urine in a similar fashion to xenobiotics in the intestine. 
Nuclear receptors are involved in the detoxification system, 
and the proteins in this system are regulated by transcription 
factors such as AhR and the pregnane X receptor (PXR). The 
binding of xenobiotic chemicals to these receptors induces 
the production of detoxifying enzymes, such as the cyto-
chrome P450 family and glutathione-S-transferases in the 
liver and lungs, and this leads to the modification of phyto-
biotics to render them water-soluble to promote excretion in 
urine. It should be noted that the detoxification system in-
teracts with the inflammatory network [82]. Xenoreceptors, 
PXR, and constitutive androstane receptors affect inflamma-
tion by interfering with NF-κB [83], and some phytobiotics 
have been shown to activate PXR and AhR [84]. Therefore, 
the involvement of the detoxification system in inflammato-
ry signaling might be implicated in the ameliorative effects 
of phytobiotics. 

HOW DO PHYTOBIOTICS PROMOTE GROWTH?

Synthetic antibiotic/antimicrobial growth promoters (AGPs) 
have been used in meat production for several decades to 
increase productive parameters such as body weight gain 
and FCR [85]. However, the use of such growth promoters 
in animal production has been gradually restricted and pro-
hibited in several countries. This has increased the interest 
in replacing these compounds with natural compounds that 
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yield similar benefits. In this context, plant-derived com-
pounds have emerged as alternatives to synthetic AGPs [21]. 
Numerous studies have reported the growth-promoting effects 
of phytobiotics, whereas the precise mechanisms underlying 
the role of phytobiotics as animal growth promoters have 
not yet been completely elucidated. Valenzuela-Grijalva et 
al [21] proposed four principal mechanisms by which phy-
tobiotics may induce growth promotion: i) an improvement 
in feed status and feed consumption based on the flavor 
and palatability of the supplemented phytobiotics; ii) mod-
ulation of ruminal fermentation due to the antimicrobial 
effects; iii) an improvement in nutrient digestion and ab-
sorption with the augmentation of intestinal functions; and 
iv) direct and indirect anabolic activity on target tissues via 
the activation of endocrine and antioxidative defense systems. 
In the present review, I primarily focused on the immuno-
modulating effects of phytobiotics, which may be related to 
their health benefits and growth promotion effects. 
  Considering these possible mechanisms, together with 
the findings regarding the improvement effects on intestinal 

condition and inflammatory status, it can be proposed that 
several beneficial effects of phytobiotics in animals may re-
sult from the improvement in intestinal function (Figure 1). 
Phytobiotics improve intestinal inflammatory status and 
barrier functions, possibly via the inhibition of TLRs and 
subsequent activation of NF-κB, the reduction in pathogenic 
bacteria, and the activation of the xenobiotics detoxifying 
system and Nrf2 pathway. This improvement in intestinal 
function subsequently prevents the translocation of patho-
gens and harmful constituents such as LPS into the circulatory 
system, and induction of systemic inflammation via excess 
secretion of cytokines and glucocorticoids. In this way, me-
tabolism is normalized to reduce metabolic expenditure. 
These changes may be involved in growth promotion in ani-
mals. It is also possible that the central nervous system and 
hypothalamic-pituitary-adrenal (HPA) axis could partici-
pate in this scenario. The HPA axis controls glucocorticoid 
secretion, and excess and long-term secretion of glucocorti-
coids disrupts the intestinal barrier function and the intestinal 
microbiota [86]. These disruptions accelerate cytokine pro-

Figure 1. Possible mechanisms of mode of action in the beneficial effect of phytobiotics.  
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duction, which in turn stimulates the HPA axis to secrete 
glucocorticoids. In this way, a vicious cycle is initiated, which 
exacerbates inflammatory and metabolic dysregulation. 
Additionally, LPS in the circulation induces not only in-
flammation but also anorexia in chickens [66]. These findings 
suggest that the improvement in intestinal function may 
play an important role in the growth-promoting effect of 
phytobiotics. 

SUMMARY AND PERSPECTIVE

There is an increasing desire to replace synthetic AGPs in 
animal production with safer natural compounds to avoid 
the increasing risk of antimicrobial resistance. The health 
benefits and growth-promoting effects of phytobiotics may 
be dependent on several mechanisms based on their various 
biological activities. However, the mode of action is likely to 
be consistent despite the supplemental concentration and 
form (powder/oil), the age at and duration of administration, 
strain, and sex. Moreover, it is difficult to determine the pre-
cise mechanism of action of each phytobiotic, as they exist 
in plants as different mixtures. This may also be a reason for 
the differences in effects among various investigations. Ad-
vances in the knowledge of the effects of phytobiotics on 
intestinal function and subsequent metabolic changes and 
inflammation could contribute to a further understanding 
of the use of phytobiotics in animal production.
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