Browse > Article
http://dx.doi.org/10.7841/ksbbj.2012.27.1.009

Antimicrobial Peptides as Natural Antibiotic Materials  

Cha, Yeon-Kyung (Pocheol High School)
Kim, Young-Soo (Samsung Petrochemical R&D Center)
Choi, Yoo-Seong (Department of Chemical Engineering, Chungnam National University)
Publication Information
KSBB Journal / v.27, no.1, 2012 , pp. 9-15 More about this Journal
Abstract
Antimicrobial peptides are widely used in various organisms as a defense system against infection. The peptides are lethal towards bacteria and fungi, however have minimal toxicity in mammalian and plant cells. In this aspect, it is considered that antimicrobial peptides are new alternative materials for defensing against microbial infection. Here, we describe overall characteristics of antimicrobial peptides based on the mechanism of action, classification of the peptides, report detection/screening methods and chemical/biological production. It is expected that understanding of innate immune system based on antimicrobial peptides tends to develop novel natural antimicrobial agents, which might be applied for defensing pathogenic microorganisms resistant to conventional antibiotics.
Keywords
Antimicrobial Peptide; Screening; Production;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yi, G. S., C. B. Park, S. C. Kim, and C. Cheong (1996) Solution structure of an antimicrobial peptide buforin II. FEBS Lett. 398: 87-90.   DOI
2 Scocchi, M., D. Romeo, and M. Zanetti (1994) Molecular cloning of Bac7, a proline- and arginine-rich antimicrobial peptide from bovine neutrophils. FEBS Lett. 352: 197-200.   DOI
3 Agerberth, B., J. Y. Lee, T. Bergman, M. Carlquist, H. G. Boman, V. Mutt, and H. Jornvall (1991) Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur. J. Biochem. 202: 849-854.   DOI
4 Selsted, M. E., M. J. Novotny, W. L. Morris, Y. Q. Tang, W. Smith, and J. S. Cullor (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J. Biol. Chem. 267: 4292-4295.
5 Romeo, D., B. Skerlavaj, M. Bolognesi, and R. Gennaro (1988) Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J. Biol. Chem. 263: 9573-9575.
6 Conlon, J. M., T. Halverson, J. Dulka, J. E. Platz, and F. C. Knoop (1999) Peptides with antimicrobial activity of the brevinin-1 family isolated from skin secretions of the southern leopard frog, Rana sphenocephala. J. Pept. Res. 54: 522-527.   DOI
7 Clark, D. P., S. Durell, W. L. Maloy, and M. Zasloff (1994) Ranalexin. A novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin. J. Biol. Chem. 269: 10849-10855.
8 Kiss, G. and H. Michl (1962) On the venomous skin secretion of the orange speckled frog Bombina variegata. Toxicon 1: 33-39.   DOI
9 Kim, Y. S. and H. J. Cha (2006) High-throughput and facile assay of antimicrobial peptides using pH-controlled fluorescence resonance energy transfer. Antimicrob. Agents Chemother. 50: 3330-3335.   DOI
10 Pardi, A., X. L. Zhang, M. E. Selsted, J. J. Skalicky, and P. F. Yip (1992) NMR studies of defensin antimicrobial peptides. 2. Three-dimensional structures of rabbit NP-2 and human HNP-1. Biochemistry 31: 11357-11364.   DOI
11 Kent, S. B. (1988) Chemical synthesis of peptides and proteins. Annu. Rev. Biochem. 57: 957-989.   DOI
12 Barany, G., N. Kneib-Cordonier, and D. G. Mullen (1987) Solid-phase peptide synthesis: a silver anniversary report. Int. J. Pept. Protein Res. 30: 705-739.
13 Wei, Q., Y. S. Kim, J. H. Seo, W. S. Jang, I. H. Lee, and H. J. Cha (2005) Facilitation of expression and purification of an antimicrobial peptide by fusion with baculoviral polyhedrin in Escherichia coli. Appl. Environ. Microbiol. 71: 5038-5043.   DOI
14 Morassutti, C., F. De Amicis, B. Skerlavaj, M. Zanetti, and S. Marchetti (2002) Production of a recombinant antimicrobial peptide in transgenic plants using a modified VMA intein expression system. FEBS Lett. 519: 141-146.   DOI
15 Andreu, D. and L. Rivas (1998) Animal antimicrobial peptides: an overview. Biopolymers 47: 415-433.   DOI   ScienceOn
16 Gesell, J., M. Zasloff, and S. J. Opella (1997) Two-dimensional 1 H NMR experiments show that the 23-residue magainin antibiotic peptide is an alpha-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J. Biomol. NMR 9: 127-135.   DOI   ScienceOn
17 Fjell, C. D., J. A. Hiss, R. E. Hancock, and G. Schneider (2011) Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov. 11: 37-51.
18 Holak, T. A., A. Engstrom, P. J. Kraulis, G. Lindeberg, H. Bennich, T. A. Jones, A. M. Gronenborn, and G. M. Clore (1988) The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry 27: 7620-7629.   DOI   ScienceOn
19 Sipos, D., M. Andersson, and A. Ehrenberg (1992) The structure of the mammalian antibacterial peptide cecropin P1 in solution, determined by proton-NMR. Eur. J. Biochem. 209: 163-169.   DOI   ScienceOn
20 Li, Y. (2011) Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr. Purif. 80: 260-267.   DOI
21 Lee, I. H. (2000) Antimicrobial peptides in innate immnne System. Biowave 2: Sub. No. 7.
22 Hultmark, D., A. Engstrom, H. Bennich, R. Kapur, and H. G. Boman (1982) Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur. J. Biochem. 127: 207-217.   DOI   ScienceOn
23 Lee, J. Y., A. Boman, C. X. Sun, M. Andersson, H. Jornvall, V. Mutt, and H. G. Boman (1989) Antibacterial peptides from pig intestine: isolation of a mammalian cecropin. Proc. Natl. Acad. Sci. USA. 86: 9159-9162.   DOI
24 Boman, H. G. (1991) Antibacterial peptides: key components needed in immunity. Cell 65: 205-207.   DOI
25 Bhunia, A. K., M. C. Johnson, and B. Ray (1988) Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici. J. Appl. Bacteriol. 65: 261-268.   DOI
26 Kolusheva, S., L. Boyer, and R. Jelinek (2000) A colorimetric assay for rapid screening of antimicrobial peptides. Nat. Biotechnol. 18: 225-227.   DOI
27 Zimmermann, G. R., P. Legault, M. E. Selsted, and A. Pardi (1995) Solution structure of bovine neutrophil beta-defensin-12: the peptide fold of the beta-defensins is identical to that of the classical defensins. Biochemistry 34: 13663-13671.   DOI
28 Fahrner, R. L., T. Dieckmann, S. S. Harwig, R. I. Lehrer, D. Eisenberg, and J. Feigon (1996) Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chem. Biol. 3: 543-550.   DOI   ScienceOn
29 Barefoot, S. F. and T. R. Klaenhammer (1983) Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl. Environ. Microbiol. 45: 1808-1815.
30 Kolusheva, S., T. Shahal, and R. Jelinek (2000) Peptide-membrane interactions studied by a new phospholipid/polydiacetylene colorimetric vesicle assay. Biochemistry 39: 15851-15859.   DOI
31 Csordas, A. and H. Michl (1970) Isolation and structure of a haemolytic polypeptide from the defensive secretion of european Bombina species. Monatsh Chem. 101: 182-189.   DOI
32 Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415: 389-395.   DOI   ScienceOn
33 Matsuzaki, K. (1999) Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim. Biophys. Acta 1462: 1-10.   DOI   ScienceOn
34 Huang, H. W. (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39: 8347-8352.   DOI
35 Shai, Y. (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta 1462: 55-70.   DOI   ScienceOn
36 Yang, L., T. M. Weiss, R. I. Lehrer, and H. W. Huang (2000) Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys. J. 79: 2002-2009.   DOI
37 Gillor, O., A. Etzion, and M. A. Riley (2008) The dual role of bacteriocins as anti- and probiotics. Appl. Microbiol. Biotechnol. 81: 591-606.   DOI
38 Inqham, A. B. and R. J. Moore (2007) Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechnol. Appl. Biochem. 47: 1-9.   DOI
39 Duquesne, S., D. Destoumieux-Garzon, J. Peduzzi, and S. Rebuffat (2007) Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat. Prod. Rep. 24: 708-734.   DOI
40 Nagao, J. I., S. M. Asaduzzaman, Y. Aso, K. Okuda, J. Nakayama, and K. Sonomoto (2006) Lantibiotics: Insight and foresight for new paradigm. J. Biosci. Bioeng. 102: 139-149.   DOI   ScienceOn