• 제목/요약/키워드: antibiotic

검색결과 3,012건 처리시간 0.035초

항생물질 생산토양 Actinomycetes 균주 선별과 항생물질 생산특성 조사 (Selective Culture of Antibiotic Producing Soil Actinomycetes and Examination of Characteristics on Antibiotic Production)

  • 구양모;이윤영;정연숙;이영복;조영애;조희영;고영선;이창훈
    • 약학회지
    • /
    • 제35권3호
    • /
    • pp.245-251
    • /
    • 1991
  • Selective culture of actinomycetes from soil microbes and their antibiotic producing characters by agar-disk method were examined. Some of the organisms which produced antibiotics on agar disk did not produce antibiotics in liquid culture. Further examination indicated that production of antibiotic was dependent on the composition of medium. Many streptomycestes produced antibacterial substances in tryptic soy broth but others produced antifungal antibiotics in V-8 broth. Production of antibacterial substances by Streptomyces sp. was also dependent on the medium composition.

  • PDF

Biosynthetic Gene Cluster of Cephabacin for the Combinatorial Biosynthesis of $\beta$-Lactam Antibiotics

  • Chang, Hyun-Sung;Park, Myoung-Jin;Atanas Demirev;Nam, Doo-Hyun
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-1
    • /
    • pp.85-87
    • /
    • 2003
  • $\beta$-Lactams are historically and clinically representative antibiotics used for therapeutic purposes. In early days, penicillin (penam antibiotic) and cephalosporin (cephem antibiotic) were found in culture broth of two different filamentous fungi, Penicillium chrysogenum and Acremonium chrysogenum. Since 1970, a variety of $\beta$-lactam structures have been discovered from bacterial cultures including Streptomyces species, which are known as cephamycin, cephabacin (cephem antibiotics), clavulanic acid (oxopenam antibiotic), thienamycin (carbapenem antibiotic), and sulfazecin (monobactam antibiotic). (omitted)

  • PDF

Mechanisms and Control Strategies of Antibiotic Resistance in Pathological Biofilms

  • Luo, Ying;Yang, Qianqian;Zhang, Dan;Yan, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.1-7
    • /
    • 2021
  • Bacterial biofilm is a community of bacteria that are embedded and structured in a self-secreted extracellular matrix. An important clinical-related characteristic of bacterial biofilms is that they are much more resistant to antimicrobial agents than the planktonic cells (up to 1,000 times), which is one of the main causes of antibiotic resistance in clinics. Therefore, infections caused by biofilms are notoriously difficult to eradicate, such as lung infection caused by Pseudomonas aeruginosa in cystic fibrosis patients. Understanding the resistance mechanisms of biofilms will provide direct insights into how we overcome such resistance. In this review, we summarize the characteristics of biofilms and chronic infections associated with bacterial biofilms. We examine the current understanding and research progress on the major mechanisms of antibiotic resistance in biofilms, including quorum sensing. We also discuss the potential strategies that may overcome biofilm-related antibiotic resistance, focusing on targeting biofilm EPSs, blocking quorum sensing signaling, and using recombinant phages.

Distribution and Antibiotic Susceptibility Patterns of Genus Mycobacterium at a Private Hospital, Korea

  • Hong, Sung Kyun;Hur, Sung-Ho;Seong, Hee-Kyung
    • 대한의생명과학회지
    • /
    • 제19권2호
    • /
    • pp.132-141
    • /
    • 2013
  • Mycobacterium isolates were retrospectively identified, antibiotics susceptibility test results and basic clinical data were analyzed for the 715, excepted 308 in 1,023 specimens, from a mycobacterial laboratory at a tertiary care hospital from September 2002 to December 2008. Their male to female ratio was 1.12 to 1 (379 male, 336 female). The median age of study population was 47 years (range from 10 to 93 years). Distribution of Mycobacterium species was 90.1% of total were isolates Mycobacterium tuberculosis, and 9.9% of the total non-tuberculosis Mycobacterium isolated, and Among nontuberculosis Mycobacterium isolates, 60.6% were Mycobacterium avium complex, 14.1% were isolates Mycobacterium abscessus, and 12.7% were isolates Mycobacterium intracellulare. Among 526 Mycobacterium tuberculosis isolates, 81.7% isolates were susceptible to first line antibiotics, 18.3% were resistant to one or more antibiotics. Non-tuberculosis Mycobacterium isolates, all were resistant to two or more antibiotics. Multi-antibiotic resistant tuberculosis rate was show 10.2% of total specimens. Isolated Mycobacterium species, 19.2% were multi-antibiotic resistant tuberculosis, and the rate of nontuberculosis Mycobacterium resistant to isoniazid and rifampin was very highly 84.5%. Thus among acid fast bacilli culture positive cases, Mycobacterium tuberculosis and non-tuberculosis Mycobacterium were must exactly identification and antibiotic sensitivity test. It was considered to help to select of the antibiotic in preventive medicine.

Tetracycline계 항생물질들의 활성탄 흡착 및 생물여과 공정에 의한 생분해 특성 (Characteristics of Adsorption and Biodegradation of Tetracycline Antibiotics by Granular Activated Carbon and Biofiltration Process)

  • 손희종;염훈식;류동춘;장성호;손형식
    • 한국환경과학회지
    • /
    • 제23권3호
    • /
    • pp.379-386
    • /
    • 2014
  • Adsorption and biodegradation performance of tetracycline antibiotic compounds such as ttetracycline (TC), oxytetracycline (OTC), minocycline (MNC), chlortetracycline (CTC), doxycycline (DXC), meclocycline (MCC), demeclocycline (DMC) on granular activated carbon (GAC) and anthracite-biofilter were evaluated in this study. Removal efficiency of seven tetracycline antibiotic compounds showed 54%~97% by GAC adsorption process (EBCT: 5~30 min). The orders of removal efficiency by GAC adsorption were tetracycline, demeclocycline, oxytetracycline, chlortetracycline, doxytetracycline, meclocycline and minocycline. Removal efficiencies of seven tetracycline antibiotic compounds showed 1%~61% by anthracite biofiltration process (EBCT: 5~30 min). The highest biodegradable tetracycline antibiotic compound was minocycline, and the worst biodegradable tetracycline antibiotic compounds were oxytetracycline and demeclocycline.

Prescription of antibiotics after tooth extraction in adults: a nationwide study in Korea

  • Choi, Yoon-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제46권1호
    • /
    • pp.49-57
    • /
    • 2020
  • Objectives: This study aimed to understand the nationwide patterns of antibiotic prescription after tooth extraction in adult patients. Materials and Methods: This study analyzed dental records from the National Health Insurance Service-National Sample Cohort (NHIS-NSC) database on 503,725 tooth extractions performed in adults (≥19 years) during 2011-2015. Patient sex, age, household income, systemic disease (diabetes mellitus and hypertension), type of dental institution, region of dental institution, year of prescription, and type of tooth extraction procedure were considered. The antibiotic prescription rate and broad-spectrum antibiotic prescription frequency were analyzed using chi-squared tests. Factors affecting the prescription of broad-spectrum antibiotics were evaluated using multivariate logistic regression analysis. Results: The rate of antibiotic prescription after tooth extraction was 81.85%. Penicillin was most commonly prescribed (45.25%), followed by penicillin with beta-lactamase inhibitors (18.76%), metronidazole (12.29%), and second- to fourth-generation cephalosporins (11.52%). The proportion of broad-spectrum antibiotics used among all prescribed antibiotics was 45.88%. Conclusion: The findings of this study demonstrate that the rate of antibiotic prescription after tooth extraction is higher in Korea than in other countries. Furthermore, broad-spectrum antibiotics are used more frequently, which may indicate unnecessary drug prescription, an important contributor to antibiotic resistance.

항생물질(抗生物質)의 개발(開發)을 위한 국내자원(國內資源) 조사(調査) 연구(硏究)(I) -한국(韓國) 서해안(西海岸) 지방(地方)의 토양중(土壤中) 항균성(抗菌性) 방선균(放線菌)의 분포(分布)- (Studies on the Development of Antibiotics in Korea(I) -The Distribution of Antibiotic-producing Streptomyces in the Western Area of Korea(I)-)

  • 이돈일;김성원;고광
    • 한국균학회지
    • /
    • 제9권2호
    • /
    • pp.103-108
    • /
    • 1981
  • The antibiotic-producing Streptomyces strains were isolated from the soils of various localities in Yeang-Kwang and tested for the activity against some of gram positive and negative microorganisms, especially against Pseudomonas aeruginosa. The results are summarized as follows. 1. A total of 1464 Streptomyces strains were isolated from 336 soil samples. Of all the strains tested, 636 strains of the isolates showed antibiotic activity against either gram positive or negative test organisms. And 408 of the 636 strains were strongly active against one or all of those test­organisms. 2. Ninety-three of Streptomyces strains among the active isolates showed the antibiotic activity against Pseudomonas aeruginosa, and 24 of 93 strains showed the strong antibiotic activity against all of the test organisms i.e. Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella typhi and Shigella jlexneri. 3. Antibiotic-producing Streptomyces strains active against Pseudomonas aeruginosa were isolated from the soil samples taken from vegetable field, paddy field, sandy ground and roadway, but not isolated from the soil taken from dwelling area, grass field and piers.

  • PDF

Structure and Antibiotic Activity of Fragment Peptides of Antifungal Protein Isolated From Aspergillus giganteus

  • Shin, Song-Yub;Kang, Joo-Hyun;Lee, Dong-Gun;Jin, Zhe-Zhu;Jang, So-Youn;Kim, Kil-Lyong;Hahm, Kyung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권3호
    • /
    • pp.276-281
    • /
    • 1999
  • In order to determine the functional region of the antifungal protein (AFP) isolated from Aspergillus giganteus responsible for growth inhibitory activity and the promotion of phospholipid vesicle aggregation, overlapping peptides covering the complete sequence of AFP were synthesized. The antibiotic activity against bacterial, fungal, and tumor cells, and the vesicle-aggregation activity of the synthetic peptides were investigated. The AFP functional sequence responsible for antibiotic and vesicle-aggregation activity was determined to be located within the region between AFP residues 19 to 32. AFP (19-32) exhibited an a-helical conformation in a cell membrane-like environment. AFP (19-32) displayed potent antibiotic activity against bacterial, fungal, and tumor cells without peptide toxicity as indicated by hemolysis. Accordingly, AFP (19-32) could be used as a good model for the design of effective antibiotic agents with powerful antibiotic activity yet without any cytotoxic effects against the host organism.

  • PDF

Enhanced Antibiotic Production by Streptomyces sindenensis Using Artificial Neural Networks Coupled with Genetic Algorithm and Nelder-Mead Downhill Simplex

  • Tripathi, C.K.M.;Khan, Mahvish;Praveen, Vandana;Khan, Saif;Srivastava, Akanksha
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권7호
    • /
    • pp.939-946
    • /
    • 2012
  • Antibiotic production with Streptomyces sindenensis MTCC 8122 was optimized under submerged fermentation conditions by artificial neural network (ANN) coupled with genetic algorithm (GA) and Nelder-Mead downhill simplex (NMDS). Feed forward back-propagation ANN was trained to establish the mathematical relationship among the medium components and length of incubation period for achieving maximum antibiotic yield. The optimization strategy involved growing the culture with varying concentrations of various medium components for different incubation periods. Under non-optimized condition, antibiotic production was found to be $95{\mu}g/ml$, which nearly doubled ($176{\mu}g/ml$) with the ANN-GA optimization. ANN-NMDS optimization was found to be more efficacious, and maximum antibiotic production ($197{\mu}g/ml$) was obtained by cultivating the cells with (g/l) fructose 2.7602, $MgSO_4$ 1.2369, $(NH_4)_2PO_4$ 0.2742, DL-threonine 3.069%, and soyabean meal 1.952%, for 9.8531 days of incubation, which was roughly 12% higher than the yield obtained by ANN coupled with GA under the same conditions.

A Preliminary Study: Antibiotic Resistance of Escherichia coli and Staphylococcus aureus from the Meat and Feces of Various South African Wildlife Species

  • van den Honert, Michaela Sannettha;Gouws, Pieter Andries;Hoffman, Louwrens Christiaan
    • 한국축산식품학회지
    • /
    • 제41권1호
    • /
    • pp.135-144
    • /
    • 2021
  • This study determined the antibiotic resistance patterns of Escherichia coli and Staphylococcus aureus from the raw meat and feces of three game species from three different farms across South Africa. The Kirby-Bauer disk diffusion method was used according to the Clinical and Laboratory Standards Institute 2018 guidelines. E. coli was tested against ampicillin, ceftazidime, chloramphenicol, streptomycin, sulphafurazole and tetracycline. S. aureus was tested against tetracycline, erthromycin, vancomycin, penicillin, oxacillin and cefoxitin. There were no significant differences in the E. coli antibiotic resistance profiles between the meat and fecal samples (except towards ceftazidime where 5% of the meat isolates were resistant and 0% of the fecal isolates). The S. aureus meat isolates showed high (75%) resistance towards penicillin and on average, 13% were resistant to oxacillin/ cefoxitin, indicating methicillin resistance. The results from this study indicate that there is incidence of antibiotic resistant bacteria from the feces and meat of wildlife species across South Africa, suggesting that cross contamination of the meat occurred during slaughter by antibiotic resistant bacteria from the abattoir personnel or equipment and or from carcass fecal matter. In addition, the results highlight the importance of food safety and hygiene procedures during slaughter to prevent cross-contamination of antibiotic resistant bacteria, as well as pathogens, onto raw meat.