Browse > Article
http://dx.doi.org/10.5851/kosfa.2020.e62

A Preliminary Study: Antibiotic Resistance of Escherichia coli and Staphylococcus aureus from the Meat and Feces of Various South African Wildlife Species  

van den Honert, Michaela Sannettha (Centre for Food Safety, Department of Food Science, University of Stellenbosch)
Gouws, Pieter Andries (Centre for Food Safety, Department of Food Science, University of Stellenbosch)
Hoffman, Louwrens Christiaan (Department of Animal Sciences, University of Stellenbosch)
Publication Information
Food Science of Animal Resources / v.41, no.1, 2021 , pp. 135-144 More about this Journal
Abstract
This study determined the antibiotic resistance patterns of Escherichia coli and Staphylococcus aureus from the raw meat and feces of three game species from three different farms across South Africa. The Kirby-Bauer disk diffusion method was used according to the Clinical and Laboratory Standards Institute 2018 guidelines. E. coli was tested against ampicillin, ceftazidime, chloramphenicol, streptomycin, sulphafurazole and tetracycline. S. aureus was tested against tetracycline, erthromycin, vancomycin, penicillin, oxacillin and cefoxitin. There were no significant differences in the E. coli antibiotic resistance profiles between the meat and fecal samples (except towards ceftazidime where 5% of the meat isolates were resistant and 0% of the fecal isolates). The S. aureus meat isolates showed high (75%) resistance towards penicillin and on average, 13% were resistant to oxacillin/ cefoxitin, indicating methicillin resistance. The results from this study indicate that there is incidence of antibiotic resistant bacteria from the feces and meat of wildlife species across South Africa, suggesting that cross contamination of the meat occurred during slaughter by antibiotic resistant bacteria from the abattoir personnel or equipment and or from carcass fecal matter. In addition, the results highlight the importance of food safety and hygiene procedures during slaughter to prevent cross-contamination of antibiotic resistant bacteria, as well as pathogens, onto raw meat.
Keywords
antimicrobial resistance; game; bacteria; pathogen;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pesavento G, Ducci B, Comodo N, Lo Nostro A. 2007. Antimicrobial resistance profile of Staphylococcus aureus isolated from raw meat: A research for methicillin resistant Staphylococcus aureus (MRSA). Food Control 18:196-200.   DOI
2 Rawat D, Nair D. 2010. Extended-spectrum β-lactamases in gram negative bacteria. J Glob Infect Dis 2:263-274.   DOI
3 Skurnik D, Ruimy R, Andremont A, Amorin C, Rouquet P, Picard B, Denamur E. 2006. Effect of human vicinity on antimicrobial resistance and integrons in animal faecal Escherichia coli. J Antimicrob Chemother 57:1215-1219.   DOI
4 van den Honert MS, Gouws PA, Hoffman LC. 2018. Importance and implications of antibiotic resistance development in livestock and wildlife farming in South Africa: A review. S Afr J Anim Sci 48:401-412.   DOI
5 van den Honert MS, Gouws PA, Hoffman LC. 2020. A preliminary study: Antibiotic resistance patterns of Escherichia coli and Enterococcus species from wildlife species subjected to supplementary feeding on various South African farms. Animals 10:396.   DOI
6 van Overbeek LS, Wellington EMH, Egan S, Smalla K, Heuer H, Collard JM, Guillaume G, Karagouni AD, Nikolakopoulou TL, van Elsas JD. 2002. Prevalence of streptomycin-resistance genes in bacterial populations in European habitats. FEMS Microbiol Ecol 42:277-288.   DOI
7 Russi NB, Maito J, Dieser SA, Renna MS, Signorini ML, Camussone C, Neder VE, Pol M, Tirante L, Odierno LM, Calvinho LF. 2015. Comparison of phenotypic tests for detecting penicillin G resistance with presence of blaZ gene in Staphylococcus aureus isolated from bovine intramammary infections. J Dairy Res 82:317-321.   DOI
8 Das P, Mazumder PB. 2016. Prevalence of Staphylococcus in raw meat samples in Southern Assam, India. IOSR J Agric Vet Sci 9:23-29.
9 Dias D, Torres RT, Kronvall G, Fonseca C, Mendo S, Caetano T. 2015. Assessment of antibiotic resistance of Escherichia coli isolates and screening of Salmonella spp. in wild ungulates from Portugal. Res Microbiol 166:584-593.   DOI
10 Kozak GK, Boerlin P, Janecko N, Reid-Smith RJ, Jardine C. 2009. Antimicrobial resistance in Escherichia coli isolates from swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Appl Environ Microbiol 75:559-566.   DOI
11 Schlegelova J, Napravnikova E, Dendis M, Horvath R, Benedik J, Babak V, Klimova E, Navratilova P, Sustackova A. 2004. Beef carcass contamination in a slaughterhouse and prevalence of resistance to antimicrobial drugs in isolates of selected microbial species. Meat Sci 66:557-565.   DOI
12 Amir M, Muhammad R, Chang Y-F, Akhtar S, Yoo SH, Sheikh AS, Kashif M. 2017. Impact of unhygienic conditions during slaughtering and processing on spread of antibiotic resistant Escherichia coli from poultry. Microbiol Res 8:35-40.
13 van Shalkwyk DL, Hoffman LC. 2010. Guidelines for the harvesting of game for meat export. AgriPublishers, Windhoek, Namibia.
14 Wegst-Uhrich SR, Navarro DAG, Zimmerman L, Aga DS. 2014. Assessing antibiotics sorption in soil: A literature review and new case studies on sulphonamides and macrolides. Chem Cent J 8:5.   DOI
15 Wilkerson C, Samadpour M. 2004. Antibiotic resistance and distribution of tetracycline resistance genes in Escherichia coli O157:H7 isolates from humans and bovines. Antimicrob Agents Chemother 48:1066-1067.   DOI
16 Appelbaum PC. 2007. Microbiology of antibiotic resistance in Staphylococcus aureus. Clin Infect Dis 45:S165-S170.   DOI
17 Bryan A, Shapir, N, Sadowsky MJ. 2004. Frequency and distribution of tetracycline resistance genes in genetically diverse, nonselected, and nonclinical Escherichia coli strains isolated from diverse human and animal sources. Appl Environ Microbiol 70:2503-2507.   DOI
18 Aslam M, Nattress F, Greer G, Yost C, Gill C, McMullen L. 2003. Origin of contamination and genetic diversity of Escherichia coli in beef cattle. Appl Environ Microbiol 69:2794-2799.   DOI
19 Bakhtiary F, Sayevand HR, Remely M, Hippe B, Hosseini H, Haslberger AG. 2016. Evaluation of bacterial contamination sources in meat production line. J Food Qual 39:750-756.   DOI
20 Boerlin P, Travis R, Gyles CL, Reid-Smith R, Janecko N, Lim H, Nicholson V, McEwen SA, Friendship R, Archambault M. 2005. Antimicrobial resistance and virulence genes of Escherichia coli isolates from swine in Ontario. Appl Environ Microbiol 71:6753-6761.   DOI
21 Cantas L, Shah SQA, Cavaco LM, Manaia CM, Walsh F, Popowska M, Garelick H, Burgmann H, Sorum H. 2013. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol 4:96.   DOI
22 Chambers HF, DeLeo FR. 2009. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:629-641.   DOI
23 Clinical and Laboratory Standards Institute. 2018. M100 Performance standards for antimicrobial susceptibility testing. 28th ed. CLSI, Waune, PA, USA.
24 Costa D, Poeta P, Saenz Y, Vinue L, Coelho AC, Matos M, Rojo-Bezares B, Rodrigues J, Torres C. 2008. Mechanisms of antibiotic resistance in Escherichia coli isolates recovered from wild animals. Microb Drug Resist 14:71-77.   DOI
25 Dahms C, Hubner N-O, Kossow A, Mellmann A, Dittmann K, Kramer A. 2015. Occurrence of ESBL-producing Escherichia coli in livestock and farm workers in Mecklenburg-Western Pomerania, Germany. PLOS ONE 10:e0143326.   DOI
26 Henton MM, Eagar HA, Swan GE, van Vuuren M. 2011. Antibiotic management and resistance in livestock production. S Afr Med J 101:583-586.
27 Gilmore KS, Gilmore MS, Sahn DF. 2008. Methicillin resistance in Staphylococcus aureus. In Bacterial resistance to antimicrobials. 2nd ed. Wax RG, Lewis K, Salyers A, Taber H (ed). CRC Press, Florida, FL, USA. pp 291-296.
28 Gouws PA, Shange N, Hoffman LC. 2017. Microbial quality of springbok (Antidorcas marsupialis) meat in relation to harvesting and production process. In Game meat hygiene: Food safety and security. Paulsen P, Bauer A, Smulders FJM (ed). Wageningen Academic Publishers, Gelderland, The Netherlands. pp 223-228.
29 Guenther S, Ewers C, Wieler LH. 2011. Extended-spectrum beta-lactamases producing E. coli in wildlife, yet another form of environmental pollution? Front Microbiol 2:246.   DOI
30 Jackson CR, Davis JA, Barrett JB. 2013. Prevalence and characterization of methicillin- resistant Staphylococcus aureus isolates from retail meat and humans in Georgia. J Clin Microbiol 51:1199-1207.   DOI
31 Karesh WB, Loh E, Machalaba C. 2012. Food safety: A view from the wild side. In Improving food safety through a one health approach. National Academies Press, Washington, DC, USA. pp 207-211.
32 Kelman A, Soong YA, Dupuy N, Shafer D, Richbourg W, Johnson K, Brown T, Kestler E, Li Y, Zheng J, McDermott P, Meng J. 2011. Antimicrobial susceptibility of Staphylococcus aureus from retail ground meats. J Food Prot 74:1625-1629.   DOI
33 Overdevest I, Willemsen I, Rijnsburger M, Eustace A, Xu L, Hawkey P, Heck M, Savelkoul P, Vandenbroucke-Grauls C, van der Zwaluw K, Huijsdens X, Kluytmans J. 2011. Extended-spectrum β-lactamase genes of Escherichia coli in chicken meat and humans, the Netherlands. Emerg Infect Dis 17:1216-1222.   DOI
34 Li Q, Sherwood JS, Loque CM. 2007. Characterization of antimicrobial resistant Escherichia coli isolated from processed bison carcasses. J Appl Microbiol 103:2361-2369.   DOI
35 Lowy F. 2003. Antimicrobial resistance: The example of Staphylococcus aureus. J Clin Invest 111:1265-1273.   DOI
36 Naas HT, Edarhoby RA, Garbaj AM, Azwai SM, Abolghait SK, Gammoudi FT, Moawad AA, Barbieri I, Eldaghayes IM. 2019. Occurrence, characterization, and antibiogram of Staphylococcus aureus in meat, meat products, and some seafood from Libyan retail markets. Vet World 12:925-931.   DOI