Browse > Article
http://dx.doi.org/10.4014/jmb.1109.09018

Enhanced Antibiotic Production by Streptomyces sindenensis Using Artificial Neural Networks Coupled with Genetic Algorithm and Nelder-Mead Downhill Simplex  

Tripathi, C.K.M. (Division of Fermentation Technology, C.S.I.R., Central Drug Research Institute)
Khan, Mahvish (Department of Biotechnology, Integral University)
Praveen, Vandana (Division of Fermentation Technology, C.S.I.R., Central Drug Research Institute)
Khan, Saif (Department of Biotechnology, Integral University)
Srivastava, Akanksha (Division of Fermentation Technology, C.S.I.R., Central Drug Research Institute)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.7, 2012 , pp. 939-946 More about this Journal
Abstract
Antibiotic production with Streptomyces sindenensis MTCC 8122 was optimized under submerged fermentation conditions by artificial neural network (ANN) coupled with genetic algorithm (GA) and Nelder-Mead downhill simplex (NMDS). Feed forward back-propagation ANN was trained to establish the mathematical relationship among the medium components and length of incubation period for achieving maximum antibiotic yield. The optimization strategy involved growing the culture with varying concentrations of various medium components for different incubation periods. Under non-optimized condition, antibiotic production was found to be $95{\mu}g/ml$, which nearly doubled ($176{\mu}g/ml$) with the ANN-GA optimization. ANN-NMDS optimization was found to be more efficacious, and maximum antibiotic production ($197{\mu}g/ml$) was obtained by cultivating the cells with (g/l) fructose 2.7602, $MgSO_4$ 1.2369, $(NH_4)_2PO_4$ 0.2742, DL-threonine 3.069%, and soyabean meal 1.952%, for 9.8531 days of incubation, which was roughly 12% higher than the yield obtained by ANN coupled with GA under the same conditions.
Keywords
Streptomyces sindenensis; antibiotic; artificial neural networks; genetic algorithm; Nelder-Mead downhill simplex;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Box, G. E. P., W. G. Hunter, and J. S. Hunter. 1978. Statistics for Experiments. John Willey & Sons, New York.
2 Castro, P. M. L., P. M. Hayter, A. P. Ison, and A. T. Bull. 1992. Application of a statistical design to the optimization of culture medium for recombinant interferon-gamma production by Chinese hamster ovary cells. Appl. Microbiol. Biotechnol. 38: 84-90.
3 Chhatpar, H. S., R. Vaidya, and P. Vyas. 2003. Statistical optimization of medium components for the production of chitinase by Alcaligenes xylosoxydans. Enzyme Microb. Technol. 33: 92-96.   DOI   ScienceOn
4 Dennis, J. E. and R. B. Chnabel. 1983. Numerical Methods For Unconstrained Optimization and Nonlinear Equations. Prentice- Hall Press, Englewood Cliffs, NJ.
5 Fleck-Schneidera, P., F. Lehra, and C. Posten. 2007. Modelling of growth and product formation of Porphyridium purpureum. J. Biotechnol. 132: 134-141.   DOI   ScienceOn
6 Furuhashi, K. and M. Takagi. 1984. Optimization of a medium for the production of 1,2-epoxytetradecane by Nocardia corallina B- 276. Appl. Microbiol. Biotechnol. 20: 6-9.
7 Gill, P. E., W. Murray, and M. H., Wright. 1981. Practical Optimization. Academic Press, New York.
8 Gough, S., O. Flynn, C. J. Hack, and R. Marchant. 1996. Fermentation of molasses using a thermotolerant yeast, Kluyveromyces marxianus IMB3: Simplex optimization of media supplements. Appl. Microbiol. Biotechnol. 46: 187-190.
9 Haider, M. A., K. Pakshirajan, A. Singh, and S. Chaudhary. 2008. Artificial neural network-genetic algorithm approach to optimize media constituents for enhancing lipase production by a soil microorganism. Appl. Biochem. Biotechnol. 144: 225-235.   DOI   ScienceOn
10 Inbar, I. and A. Lapidot. 1988. Metabolic regulation in Streptomyces parvulus during actinomycin D synthesis, studied with $^{13}C$- and 1$^{15}N$-labeled precursors by $^{13}C$ and $^{15}N$ nuclear magnetic resonance spectroscopy and by gas chromatographymass spectrometry. J. Bacteriol. 170: 4055-4064.
11 Jacoby, S. L. S., J. S. Kowalik, and J. T. Pizzo. 1972. Iterative Methods for Nonlinear Optimization Problems. Prentice-Hall Press, Englewood Cliffs, NJ.
12 Katz, E., P. Pienta, and A. Sivak. 1956. The role of nutrition in the synthesis of actinomycin. Appl. Microbiol. 6: 236-241.
13 Khan, S., V. Bhakuni, R. Tewari, C. K. M. Tripathi, and V. D. Gupta. 2010. Maximizing the native concentration and shelf life of a protein: A multi objective optimization to reduce aggregation. Appl. Microbiol. Biotechnol. 89: 99-108.
14 Polak, E. 1971. Computational Methods in Optimization. Academic Press, New York.
15 Klein, E. J., S. L. Rivera, and J. E. Porter. 2000. Optimization of ion-exchange protein separations using a vector quantizing neural network. Biotechnol. Prog. 16: 506-512.   DOI   ScienceOn
16 Nagata, Y. and K. H. Chu. 2003. Optimization of a fermentation medium using neural networks and genetic algorithms. Biotechnol. Lett. 25: 1837-1842.   DOI   ScienceOn
17 Nelder, J. A. and R. Mead. 1965. A simple method for function minimization. Comp. J. 7: 308-313.   DOI
18 Powell, M. J. D. 1964. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comp. J. 7: 155-162.   DOI
19 Praveen, V., C. K. M. Tripathi, V. Bihari, and S. C. Srivastava. 2008. Production of actinomycin-D by a new isolate, Streptomyces sindenensis. Ann. Microbiol. 58: 109-114.   DOI   ScienceOn
20 Pundle, A. V. and H. S. Raman. 1994. Medium optimization for the production of penicillin V acylase from Bacillus sphaericus. Biotechnol. Lett. 16: 1041-1046.   DOI   ScienceOn
21 Schmidt, F. R. 2005. Optimization and scale up of industrial fermentation processes. Appl. Microbiol. Biotechnol. 68: 425-435.   DOI   ScienceOn
22 Silveira, R. G., T. Kakizono, S. Takemoto, N. Nishio, and S. Nagai. 1991. Medium optimization by an orthogonal design for the growth of Methanosarcina barkeri. J. Ferm. Bioeng. 72: 20-25.   DOI   ScienceOn
23 Singh, V., M. Khan, S. Khan, and C. K. M. Tripathi. 2009. Optimization of actinomycin V production by Streptomyces triostinicus using artificial neural network and genetic algorithm. Appl. Microbiol. Biotechnol. 82: 379-385.   DOI   ScienceOn
24 Windsor, S. A. M. and H. Tinker. 1996. Binding of biologically important molecules to DNA, probed using electro-fluorescence polarization spectroscopy. Biophys. Chem. 58: 141-150.   DOI   ScienceOn
25 Sousa, M. F. V. Q., C. E. Lopes, and N. Jr. Pereira. 2002. Development of a bioprocess for the production of actinomycin-D. Braz. J. Chem. Eng. 19: 277-285.
26 Spendley, W., G. R. Hext, and F. R. Himsworth. 1962. Sequential application of simplex designs in optimization and evolutionary operation. Technometrics 4: 441-461.   DOI   ScienceOn
27 Thiel, T., J. Bramble, and S. Rogers. 1989. Optimum conditions for growth of cyanobacteria on solid media. FEMS Microbiol. Lett. 61: 27-31.   DOI   ScienceOn
28 Yarbro, L. and A. S. N. Deming. 1974. Selection and preprocessing of factors for simplex optimization. Anal. Chim. Acta 73: 391-398.   DOI   ScienceOn