Browse > Article
http://dx.doi.org/10.4014/jmb.2010.10021

Mechanisms and Control Strategies of Antibiotic Resistance in Pathological Biofilms  

Luo, Ying (Department of Pharmacy, Hangzhou Geriatric Hospital)
Yang, Qianqian (Department of Pharmacy, Hangzhou Geriatric Hospital)
Zhang, Dan (Department of Pharmacy, Hangzhou Geriatric Hospital)
Yan, Wei (Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.1, 2021 , pp. 1-7 More about this Journal
Abstract
Bacterial biofilm is a community of bacteria that are embedded and structured in a self-secreted extracellular matrix. An important clinical-related characteristic of bacterial biofilms is that they are much more resistant to antimicrobial agents than the planktonic cells (up to 1,000 times), which is one of the main causes of antibiotic resistance in clinics. Therefore, infections caused by biofilms are notoriously difficult to eradicate, such as lung infection caused by Pseudomonas aeruginosa in cystic fibrosis patients. Understanding the resistance mechanisms of biofilms will provide direct insights into how we overcome such resistance. In this review, we summarize the characteristics of biofilms and chronic infections associated with bacterial biofilms. We examine the current understanding and research progress on the major mechanisms of antibiotic resistance in biofilms, including quorum sensing. We also discuss the potential strategies that may overcome biofilm-related antibiotic resistance, focusing on targeting biofilm EPSs, blocking quorum sensing signaling, and using recombinant phages.
Keywords
Biofilm; antibiotic resistance mechanisms; quorum sensing; control strategies;
Citations & Related Records
연도 인용수 순위
  • Reference
1 de la Fuente-Nunez C, Cardoso MH, de Souza Candido E, Franco OL, Hancock RE. 2016. Synthetic antibiofilm peptides. Biochim. Biophys. Acta 1858: 1061-1069.   DOI
2 Asfour HZ. 2018. Anti-quorum sensing natural compounds. J. Microsc. Ultrastruct. 6: 1-10.   DOI
3 Paul D, Gopal J, Kumar M, Manikandan M. 2018. Nature to the natural rescue: silencing microbial chats. Chem. Biol. Interact. 280: 86-98.   DOI
4 He N, Hu J, Liu H, Zhu T, Huang B, Wang X, et al. 2011. Enhancement of vancomycin activity against biofilms by using ultrasoundtargeted microbubble destruction. Antimicrob. Agents Chemother. 55: 5331-5337.   DOI
5 Harrison-Balestra C, Cazzaniga AL, Davis SC, Mertz PM. 2003. A wound-isolated Pseudomonas aeruginosa grows a biofilm in vitro within 10 hours and is visualized by light microscopy. Dermatol. Surg. 29: 631-635.   DOI
6 Wolcott RD, Rumbaugh KP, James G, Schultz G, Phillips P, Yang Q, et al. 2010. Biofilm maturity studies indicate sharp debridement opens a time- dependent therapeutic window. J. Wound Care 19: 320-328.   DOI
7 Vuotto C, Donelli G. 2019. Novel treatment strategies for biofilm-based infections. Drugs 79: 1635-1655.   DOI
8 Hetrick EM, Shin JH, Paul HS, Schoenfisch MH. 2009. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials 30: 2782-2789.   DOI
9 Alcalde-Rico M, Olivares-Pacheco J, Halliday N, Camara M, Martinez JL. 2020. The analysis of the role of MexAB-OprM on quorum sensing homeostasis shows that the apparent redundancy of Pseudomonas aeruginosa multidrug efflux pumps allows keeping the robustness and the plasticity of this intercellular signaling network. bioRxiv. 2020.2003.2010.986737.
10 Lebeaux D, Ghigo JM, Beloin C. 2014. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 78: 510-543.   DOI
11 Qvortrup K, Hultqvist LD, Nilsson M, Jakobsen TH, Jansen CU, Uhd J, et al. 2019. Small molecule anti-biofilm agents developed on the basis of mechanistic understanding of biofilm formation. Front. Chem. 7: 742.   DOI
12 Gunn JS, Bakaletz LO, Wozniak DJ. 2016. What's on the outside matters: the role of the extracellular polymeric substance of gramnegative biofilms in evading host immunity and as a target for therapeutic intervention. J. Biol. Chem. 291: 12538-12546.   DOI
13 Peng X, Zhang Y, Bai G, Zhou X, Wu H. 2016. Cyclic di-AMP mediates biofilm formation. Mol. Microbiol. 99: 945-959.   DOI
14 Ren Z, Cui T, Zeng J, Chen L, Zhang W, Xu X, et al. 2016. Molecule targeting glucosyltransferase inhibits Streptococcus mutans biofilm formation and virulence. Antimicrob. Agents Chemother. 60: 126-135.   DOI
15 Kaplan JB. 2014. Biofilm matrix-degrading enzymes. Methods Mol. Biol. 1147: 203-213.   DOI
16 Fleming D, Chahin L, Rumbaugh K. 2017. Glycoside hydrolases degrade polymicrobial bacterial biofilms in wounds. Antimicrob. Agents Chemother. 61: e01998-16.
17 Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, et al. 2010. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465: 346-349.   DOI
18 Okshevsky M, Regina VR, Meyer RL. 2015. Extracellular DNA as a target for biofilm control. Curr. Opin. Biotechnol. 33: 73-80.   DOI
19 Hymes SR, Randis TM, Sun TY, Ratner AJ. 2013. DNase inhibits Gardnerella vaginalis biofilms in vitro and in vivo. J. Infect. Dis. 207: 1491-1497.   DOI
20 Baelo A, Levato R, Julian E, Crespo A, Astola J, Gavalda J, et al. 2015. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J. Control. Release 209: 150-158.   DOI
21 Jana S, Charlton SGV, Eland LE, Burgess JG, Wipat A, Curtis TP, et al. 2020. Nonlinear rheological characteristics of single species bacterial biofilms. NPJ Biofilms Microbiomes 6: 19.   DOI
22 Defoirdt T. 2018. Quorum-sensing systems as targets for antivirulence therapy. Trends Microbiol. 26: 313-328.   DOI
23 Donlan RM. 2009. Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol. 17: 66-72.   DOI
24 Delcaru C, Alexandru I, Podgoreanu P, Grosu M, Stavropoulos E, Chifiriuc MC, et al. 2016. Microbial biofilms in urinary tract infections and prostatitis: etiology, pathogenicity, and combating strategies. Pathogens 5: 65.   DOI
25 Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR. 2015. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol. Rev. 39: 649-669.   DOI
26 Flemming HC, Wingender J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8: 623-633.   DOI
27 Bak G, Lee J, Suk S, Kim D, Young Lee J, Kim K-s, et al. 2015. Identification of novel sRNAs involved in biofilm formation, motility and fimbriae formation in Escherichia coli. Sci. Rep. 5: 15287.   DOI
28 Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. 2017. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol. 15: 740-755.   DOI
29 Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. 2016. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14: 563-575.   DOI
30 Stewart PS, Zhang T, Xu R, Pitts B, Walters MC, Roe F, et al. 2016. Reaction-diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections. Npj Biofilms Microbiomes 2: 16012.   DOI
31 Chan BK, Abedon ST. 2015. Bacteriophages and their enzymes in biofilm control. Curr. Pharm. Des. 21: 85-99.   DOI
32 Jamal M, Hussain T, Das CR, Andleeb S. 2015. Characterization of Siphoviridae phage Z and studying its efficacy against multidrugresistant Klebsiella pneumoniae planktonic cells and biofilm. J. Med. Microbiol. 64: 454-462.   DOI
33 O'Flaherty S, Ross RP, Meaney W, Fitzgerald GF, Elbreki MF, Coffey A. 2005. Potential of the polyvalent anti-Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from hospitals. Appl. Environ. Microbiol. 71: 1836-1842.   DOI
34 Cerca N, Oliveira R, Azeredo J. 2007. Susceptibility of Staphylococcus epidermidis planktonic cells and biofilms to the lytic action of staphylococcus bacteriophage K. Lett. Appl. Microbiol. 45: 313-317.   DOI
35 Abedon ST. 2019. Use of phage therapy to treat long-standing, persistent, or chronic bacterial infections. Adv. Drug Deliv. Rev. 145: 18-39.   DOI
36 Lee NY, Ko WC, Hsueh PR. 2019. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front. Pharmacol. 10: 1153.   DOI
37 Tursi SA, Puligedda RD, Szabo P, Nicastro LK, Miller AL, Qiu C, et al. 2020. Salmonella Typhimurium biofilm disruption by a human antibody that binds a pan-amyloid epitope on curli. Nat. Commun. 11: 1007.   DOI
38 Rasko DA, Sperandio V. 2010. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov. 9: 117-128.   DOI
39 Ghosh A, Jayaraman N, Chatterji D. 2020. Small-molecule inhibition of bacterial biofilm. ACS Omega 5: 3108-3115.   DOI
40 Singh S, Singh SK, Chowdhury I, Singh R. 2017. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol. J. 11: 53-62.   DOI
41 Miao Y, Zhou J, Chen C, Shen D, Song W, Feng Y. 2008. In vitro adsorption revealing an apparent strong interaction between endophyte Pantoea agglomerans YS19 and host rice. Curr. Microbiol. 57: 547-551.   DOI
42 Li Q, Miao Y, Yi T, Zhou J, Lu Z, Feng Y. 2012. SPM43.1 contributes to acid-resistance of non-symplasmata-forming cells in Pantoea agglomerans YS19. Curr. Microbiol. 64: 214-221.   DOI
43 Zhao X, Yu Z, Ding T. 2020. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms 8: 425.   DOI
44 Passos da Silva D, Schofield MC, Parsek MR, Tseng BS. 2017. An update on the sociomicrobiology of quorum sensing in gramnegative biofilm development. Pathogens 6: 51.   DOI
45 Rutherford ST, Bassler BL. 2012. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2: a012427.   DOI
46 Whiteley M, Diggle SP, Greenberg EP. 2017. Progress in and promise of bacterial quorum sensing research. Nature 551: 313-320.   DOI
47 Wolska KI, Grudniak AM, Rudnicka Z, Markowska K. 2016. Genetic control of bacterial biofilms. J. Appl. Genet. 57: 225-238.   DOI
48 Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F, Alcalde-Rico M, et al. 2016. Bacterial multidrug efflux pumps: Much more than antibiotic resistance determinants. Microorganisms 4: 14.   DOI
49 de Vos WM. 2015. Microbial biofilms and the human intestinal microbiome. Npj Biofilms Microbiomes 1: 15005.   DOI
50 Zhang L, Mah TF. 2008. Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J. Bacteriol. 190: 4447-4452.   DOI
51 Yaikhan T, Chuerboon M, Tippayatham N, Atimuttikul N, Nuidate T, Yingkajorn M, et al. 2019. Indole and derivatives modulate biofilm formation and antibiotic tolerance of Klebsiella pneumoniae. Indian J. Microbiol. 59: 460-467.   DOI
52 Liao J, Schurr MJ, Sauer K. 2013. The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. J. Bacteriol. 195: 3352-3363.   DOI
53 Kim J, Pitts B, Stewart PS, Camper A, Yoon J. 2008. Comparison of the antimicrobial effects of chlorine, silver ion, and tobramycin on biofilm. Antimicrob. Agents Chemother. 52: 1446-1453.   DOI
54 Alcalde-Rico M, Olivares-Pacheco J, Alvarez-Ortega C, Camara M, Martinez JL. 2018. Role of the multidrug resistance efflux pump MexCD-OprJ in the Pseudomonas aeruginosa quorum sensing response. Front. Microbiol. 9: 2752.   DOI
55 Ferrer-Espada R, Shahrour H, Pitts B, Stewart PS, Sanchez-Gomez S, Martinez-de-Tejada G. 2019. A permeability-increasing drug synergizes with bacterial efflux pump inhibitors and restores susceptibility to antibiotics in multi-drug resistant Pseudomonas aeruginosa strains. Sci. Rep. 9: 3452.   DOI
56 Hu M, Zhang C, Mu Y, Shen Q, Feng Y. 2010. Indole affects biofilm formation in bacteria. Indian J. Microbiol. 50: 362-368.   DOI
57 Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. 2018. Bacterial quorum sensing and microbial community interactions. mBio 9: e02331-17.
58 Zhang J-W, Xuan C-G, Lu C-H, Guo S, Yu J-F, Asif M, et al. 2019. AidB, a novel thermostable n-acylhomoserine lactonase from the Bacterium Bosea sp. Appl. Environ. Microbiol. 85: e02065-02019.
59 Jiang Q, Chen J, Yang C, Yin Y, Yao K. 2019. Quorum sensing: a prospective therapeutic target for bacterial diseases. Biomed. Res. Int. 2019: 2015978.
60 Pena RT, Blasco L, Ambroa A, Gonzalez-Pedrajo B, Fernandez-Garcia L, Lopez M, et al. 2019. Relationship between quorum sensing and secretion systems. Front. Microbiol. 10: 1100.   DOI
61 Qian G, Zhou Y, Zhao Y, Song Z, Wang S, Fan J, et al. 2013. Proteomic analysis reveals novel extracellular virulence-associated proteins and functions regulated by the diffusible signal factor (DSF) in Xanthomonas oryzae pv. oryzicola. J. Proteome Res. 12: 3327-3341.   DOI
62 Zhang J, Wang J, Feng T, Du R, Tian X, Wang Y, et al. 2019. Heterologous expression of the marine-derived quorum quenching enzyme moml can expand the antibacterial spectrum of Bacillus brevis. Mar. Drugs 17: 128.   DOI
63 Cavalheiro M, Teixeira MC. 2018. Candida biofilms: threats, challenges, and promising Strategies. Front. Med. (Lausanne) 5: 28.   DOI
64 Verderosa AD, Totsika M, Fairfull-Smith KE. 2019. Bacterial biofilm eradication agents: a current review. Front. Chem. 7: 824.   DOI
65 Kalia M, Yadav VK, Singh PK, Dohare S, Sharma D, Narvi SS, et al. 2019. Designing quorum sensing inhibitors of Pseudomonas aeruginosa utilizing FabI: an enzymic drug target from fatty acid synthesis pathway. 3 Biotech. 9: 40.   DOI
66 Luo J, Dong B, Wang K, Cai S, Liu T, Cheng X, et al. 2017. Baicalin inhibits biofilm formation, attenuates the quorum sensingcontrolled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS One 12: e0176883.   DOI
67 Sun B, Zhang M. 2016. Analysis of the antibacterial effect of an Edwardsiella tarda LuxS inhibitor. Springerplus 5: 92-92.   DOI
68 McBrayer DN, Cameron CD, Tal-Gan Y. 2020. Development and utilization of peptide-based quorum sensing modulators in Grampositive bacteria. Org. Biomol. Chem. 18: 7273-7290.   DOI
69 Ribet D, Cossart P. 2015. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 17: 173-183.   DOI
70 Ligthart K, Belzer C, de Vos WM, Tytgat HLP. 2020. Bridging bacteria and the gut: functional aspects of type iv pili. Trends Microbiol. 28: 340-348.   DOI
71 Papenfort K, Bassler BL. 2016. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14: 576-588.   DOI
72 Yin W, Wang Y, Liu L, He J. 2019. Biofilms: the microbial "protective clothing" in extreme environments. Int. J. Mol. Sci. 20: 3423.   DOI
73 Wannigama DL, Hurst C, Pearson L, Saethang T, Singkham-in U, Luk-in S, et al. 2019. Simple fluorometric-based assay of antibiotic effectiveness for Acinetobacter baumannii biofilms. Sci. Rep. 9: 6300.   DOI
74 Nandakumar V, Chittaranjan S, Kurian VM, Doble M. 2012. Characteristics of bacterial biofilm associated with implant material in clinical practice. Polymer J. 45: 137-142.   DOI
75 Hathroubi S, Mekni MA, Domenico P, Nguyen D, Jacques M. 2017. Biofilms: microbial shelters against antibiotics. Microb. Drug Resist. 23: 147-156.   DOI
76 Rai MK, Deshmukh SD, Ingle AP, Gade AK. 2012. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 112: 841-852.   DOI
77 Brackman G, Coenye T. 2015. Quorum sensing inhibitors as anti-biofilm agents. Curr. Pharm. Des. 21: 5-11.   DOI
78 Hazan Z, Zumeris J, Jacob H, Raskin H, Kratysh G, Vishnia M, et al. 2006. Effective prevention of microbial biofilm formation on medical devices by low-energy surface acoustic waves. Antimicrob. Agents Chemother. 50: 4144-4152.   DOI
79 Limoli DH, Jones CJ, Wozniak DJ. 2015. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol. Spectr. 3: 10.1128/microbiolspec.MB-0011-2014.   DOI
80 Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, et al. 2018. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 81: 7-11.   DOI
81 Caubet R, Pedarros-Caubet F, Chu M, Freye E, de Belem Rodrigues M, Moreau JM, et al. 2004. A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrob. Agents Chemother. 48: 4662-4664.   DOI
82 Niepa THR, Wang H, Gilbert JL, Ren D. 2017. Eradication of Pseudomonas aeruginosa cells by cathodic electrochemical currents delivered with graphite electrodes. Acta Biomater. 50: 344-352.   DOI
83 Dusane DH, Lochab V, Jones T, Peters CW, Sindeldecker D, Das A, et al. 2019. Electroceutical treatment of Pseudomonas aeruginosa biofilms. Sci. Rep. 9: 2008.   DOI
84 Percival SL, Suleman L, Vuotto C, Donelli G. 2015. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J. Med. Microbiol. 64: 323-334.   DOI
85 Miquel S, Lagrafeuille R, Souweine B, Forestier C. 2016. Anti-biofilm activity as a health issue. Front. Microbiol. 7: 592.   DOI
86 Blocher R, Rodarte Ramirez A, Castro-Escarpulli G, Curiel-Quesada E, Reyes-Arellano A. 2018. Design, synthesis, and evaluation of alkyl-quinoxalin-2(1h)-one derivatives as anti-quorum sensing molecules, inhibiting biofilm formation in Aeromonas caviae Sch3. Molecules 23: 3075.   DOI
87 Tseng BS, Zhang W, Harrison JJ, Quach TP, Song JL, Penterman J, et al. 2013. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ. Microbiol. 15: 2865-2878.   DOI
88 Zhou G, Shi Q-S, Huang X-M, Xie X-B. 2015. The three bacterial lines of defense against antimicrobial agents. Int. J. Mol. Sci. 16: 21711-21733.   DOI
89 Sharma D, Misba L, Khan AU. 2019. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 8: 76.   DOI
90 Wei Q, Bhasme P, Wang Z, Wang L, Wang S, Zeng Y, et al. 2020. Chinese medicinal herb extract inhibits PQS-mediated quorum sensing system in Pseudomonas aeruginosa. J. Ethnopharmacol. 248: 112272.   DOI
91 Van Acker H, Coenye T. 2016. The role of efflux and physiological adaptation in biofilm tolerance and resistance. J. Biol. Chem. 291: 12565-12572.   DOI