• 제목/요약/키워드: anti-tumor metastasis

검색결과 217건 처리시간 0.022초

Gallbladder Carcinoma: Analysis of Prognostic Factors in 132 Cases

  • Wang, Rui-Tao;Xu, Xin-Sen;Liu, Jun;Liu, Chang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2511-2514
    • /
    • 2012
  • Objective: To evaluate the prognostic factors of gallbladder carcinoma. Methods: Presentation, operative data, complications, and survival outcome were examined for 132 gallbladder carcinoma patients who underwent gallbladder surgery in our unit during 2002-2007, and follow-up results were obtained from every patient for univariate and multivariate survival analysis. Results: The univariate analysis showed that gallbladder lesion history, tumor cell differentiation, Nevin staging, preoperative lymph node metastasis and the surgical approach significantly correlated with the prognosis of the patients (p<0.05). The results of the multivariate analysis (Cox regression) showed that gallbladder lesion history, Nevin staging and the surgical approach were independent predicators with relative risks of 6.9, 4.4, 2.8, respectively (p=0.002, 0.003, 0.008). Conclusion: Gallbladder lesion history, Nevin staging and the surgical approach are independent prognostic factors for gallbladder carcinoma, a rapidly fatal disease. Therefore, early diagnosis, anti-infective therapy and radical surgery are greatly needed to improve the prognosis of gallbladder carcinoma.

A New Rat Model of Cisplatin-induced Neuropathic Pain

  • Lin, Hai;Heo, Bong Ha;Yoon, Myung Ha
    • The Korean Journal of Pain
    • /
    • 제28권4호
    • /
    • pp.236-243
    • /
    • 2015
  • Background: Chemotherapy-induced peripheral neuropathy is a major side effect of anti-cancer drugs, and our knowledge of its mechanisms is lacking. Several models for chemotherapy-induced neuropathy have been introduced. However, the outcomes of these models differ significantly among laboratories. Our object was to create a model of chemotherapy-induced neuropathy in rats with cancer. Methods: Female Sprague-Dawley rats were used. Mammary rat metastasis tumor (MRMT-1) cells were implanted subcutaneously in rats. Chemotherapy-induced peripheral neuropathy was induced by injection of cisplatin once a day for four days. The responses to mechanical and thermal stimuli were examined using von Frey filaments, acetone, and radiant heat. Results: Cisplatin (2 mg/kg/day) produced mechanical allodynia, while it did not induce cold allodynia or thermal hyperalgesia. This dose of cisplatin could work successfully against cancer. Body weight loss was not observed in cisplatin-treated rats, nor were other abnormal behaviors noted in the same rats. Conclusions: Repeated injection of intraperitoneal cisplatin induced peripheral neuropathic pain in rats. Thus, this type of rat model has broad applicability in studies related to searching for the mechanism of cisplatin-induced mechanical allodynia and agents for the treatment of neuropathic pain.

Epithelial-mesenchymal Transition and Cell Invasion

  • Son, Hwa-Jin;Moon, Aree
    • Toxicological Research
    • /
    • 제26권4호
    • /
    • pp.245-252
    • /
    • 2010
  • Epithelial-mesenchymal transition (EMT) is a complex process in which epithelial cells acquire the characteristics of invasive mesenchymal cells. EMT has been implicated in cancer progression and metastasis as well as the formation of many tissues and organs during development. Epithelial cells undergoing EMT lose cell-cell adhesion structures and polarity, and rearrange their cytoskeletons. Several oncogenic pathways such as transforming growth factor (TGF)-$\beta$, Wnt, and Notch signaling pathways, have been shown to induce EMT. These pathways have activated transcription factors including Snail, Slug, and the ZEB family which work as transcriptional repressors of E-cadherin, thereby making epithelial cells motile and resistant to apoptosis. Mounting evidence shows that EMT is associated with cell invasion and tumor progression. In this review, we summarize the characteristic features of EMT, pathways leading to EMT, and the role of EMT in cell invasion. Three topics are addressed in this review: (1) Definition of EMT, (2) Signaling pathways leading to EMT, (3) Role of EMT in cell invasion. Understanding the role of EMT in cell invasion will provide valuable information for establishing strategies to develop anti-metastatic therapeutics which modulate malignant cellular processes mediated by EMT.

금 나노입자의 VEGF에 의해 유발된 혈관 내피세포의 신생혈관형성 억제 효과 (Antiangiogenic Effects of Gold Nanoparticles VEGF-induced Vascular Endothelial Cells)

  • 최승현;유근창;김인숙;채수철
    • 환경생물
    • /
    • 제28권1호
    • /
    • pp.14-19
    • /
    • 2010
  • 신생혈관 형성은 세포의 성장 및 상처 치유 과정에서 중요한 현상이다. 그러나 성장인자의 불균형은 시각 및 면역질환과 같은 다양한 질환을 야기한다. 이러한 질환을 치료하는 방법 중 신생혈관 형성을 억제하는 것이 중요한 방법 중 하나이다. AuNPs의 기능과 기전이 신생혈관 형성에 있어서 아직 밝혀진 바가 없다. 현재 PEDF가 항신생혈관 형성 물질로 제안되고 있다. 본 연구에서 우리는 AuNPs가 BRECs에서 VEGF로 유도된 세포의 증식 및 이동, 신생혈관의 형성을 억제하였고 이는 세포의 성장과 침윤 및 전이와 관련된 신생혈관 형성을 억제한다고 사료된다.

Ganglioside as a Therapy Target in Various Types of Cancer

  • Qamsari, Elmira Safaie;Nourazarian, Alireza;Bagheri, Salman;Motallebnezhad, Morteza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.1643-1647
    • /
    • 2016
  • Since their discovery in 1940, it has been well established that gangliosides are associated with a number of biological pathways and cellular processes such as growth, differentiation and toxin uptake. Gangliosides are glycosphingolipids containing neuraminic acid which are expressed on the plasma membrane of cells particularly in the nervous system. Heterogeneity and structural variation in the carbohydrate chains of gangliosides contributes to unique features of each of these molecules. Thirty five years ago it was discovered that aberrant glycosylation occurs in a variety of human cancers, including aberrant glycosylation of gangliosides. Ganglioside expression in terms of quality and quantity varies in different cancers and different roles may be played. Gangliosides, by affecting the immune system, including esxpression of cytokines and adhesion molecules, may inhibit anti-tumor mechanisms, as well as having direct impact on angiogenesis, cell movement and metastasis. It should be noted that different kinds of gangliosides do not all act by the same mechanisms.

Menadione (Vitamin K3) Induces Apoptosis of Human Oral Cancer Cells and Reduces their Metastatic Potential by Modulating the Expression of Epithelial to Mesenchymal Transition Markers and Inhibiting Migration

  • Suresh, Shruthy;Raghu, Dinesh;Karunagaran, Devarajan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5461-5465
    • /
    • 2013
  • Oral cancer is one of the most commonly occurring cancers worldwide, decreasing the patient's survival rate due to tumor recurrence and metastasis. Menadione (Vitamin K3) is known to exhibit cytotoxicity in various cancer cells but the present study focused on its effects on viability, apoptosis, epithelial to mesenchymal transition (EMT), anchorage independent growth and migration of oral cancer cells. The results show that menadione is more cytotoxic to SAS (oral squamous carcinoma) cells but not to non-tumorigenic HEK293 and HaCaT cells. Menadione treatment increased the expression of pro-apoptotic proteins, Bax and p53, with a concurrent decrease in anti-apoptotic proteins, Bcl-2 and p65. Menadione induced the expression of E-cadherin but reduced the expression of EMT markers, vimentin and fibronectin. Menadione also inhibited anchorage independent growth and migration in SAS cells. These findings reveal and confirm that menadione is a potential candidate in oral cancer therapy as it exhibits cytotoxic, antineoplastic and antimigratory effects besides effectively blocking EMT in oral cancer cells.

2-Methoxy-1,4-naphthoquinone (MNQ) regulates cancer key genes of MAPK, PI3K, and NF-κB pathways in Raji cells

  • Wong, Teck Yew;Menaga, Subramaniam;Huang, Chi-Ying F.;Ho, Siong Hock Anthony;Gan, Seng Chiew;Lim, Yang Mooi
    • Genomics & Informatics
    • /
    • 제20권1호
    • /
    • pp.7.1-7.13
    • /
    • 2022
  • 2-Methoxy-1,4-naphthoquinone (MNQ) has been shown to cause cytotoxic towards various cancer cell lines. This study is designed to investigate the regulatory effect of MNQ on the key cancer genes in mitogen-activated protein kinase, phosphoinositide 3-kinase, and nuclear factor κB signaling pathways. The expression levels of the genes were compared at different time point using polymerase chain reaction arrays and Ingenuity Pathway Analysis was performed to identify gene networks that are most significant to key cancer genes. A total of 43 differentially expressed genes were identified with 21 up-regulated and 22 down-regulated genes. Up-regulated genes were involved in apoptosis, cell cycle and act as tumor suppressor while down-regulated genes were involved in anti-apoptosis, angiogenesis, cell cycle and act as transcription factor as well as proto-oncogenes. MNQ exhibited multiple regulatory effects on the cancer key genes that targeting at cell proliferation, cell differentiation, cell transformation, apoptosis, reduce inflammatory responses, inhibits angiogenesis and metastasis.

Dexamethasone Disrupts Cytoskeleton Organization and Migration of T47D Human Breast Cancer Cells by Modulating the AKT/mTOR/RhoA Pathway

  • Meng, Xian-Guo;Yue, Shou-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10245-10250
    • /
    • 2015
  • Background: Glucocorticoids are commonly co-administered with chemotherapy to prevent drug-induced allergic reactions, nausea, and vomiting, and have anti-tumor functions clinically; however, the distinct effects of GC on subtypes of tumor cells, especially in breast cancer cells, are still not well understood. In this study, we aimed to clarify the effect of GC on subtypes of T47D breast cancer cells by focusing on apoptosis, cell organization and migration, and underluing molecular mechanisms. Materials and Methods: The cell scratch test was performed to observe the cell migration rate in T47D cells treated with dexamethasone (Dex). Hoechst and MTT assays were conducted to detect cell survival and rhodamine-labeled phalloidin staining to observe cytoskeleton dynamics. Related factors in the AKT/mTOR pathway were determined by Western blotting. Results: Dex treatment could effectively inhibit T47D breast cancer cell migration with disruption of the cytoskeletal dynamic organization. Moreover, the effect of Dex on cell migration and cytoskeleton may be mediated by AKT/mTOR/RhoA pathway. Although Dex inhibited T47D cell migration, it alone may not induce cell apoptosis in T47D cells. Conclusions: Dex in T47D human breast cancer cells could effectively inhibit cell migration by disrupting the cytoskeletal dynamic organization, which may be mediated by the AKT/mTOR/RhoA pathway. Our work suggests that glucocorticoid/Dex clinical use may prove helpful for the treatment of breast cancer metastasis.

대식세포 분화 조절을 통한 대시호탕의 암세포 전이 억제 효과 (Anti-migration Effects of the Daesiho-tang (Da Chai Hu-Tang) Water Extract in Cancer Cells by Regulating Macrophage Polarization)

  • 정재훈;박신형
    • 동의생리병리학회지
    • /
    • 제38권1호
    • /
    • pp.32-37
    • /
    • 2024
  • The aim of this study was to investigate the role of Daesiho-tang (Da Chai Hu-Tang) water extract (DSTE) in regulating chronic stress-induced cancer progression, focusing on its activity in modulating tumor-associated macrophages (TAMs). Different stimuli can polarize TAMs into immune-stimulating M1 macrophages or immunosuppressive M2 macrophages. During cancer progression, M2 phenotype increases and supports tumor growth, angiogenesis and metastasis. Notably, chronic stress-induced catecholamines promote M2 macrophage polarization. In this study, we investigated whether DSTE regulates norepinephrine (NE)-induced M2 macrophage polarization in RAW 264.7 mouse macrophage cells. Even though NE itself did not increase the expression of M2 markers, the conditioned media of NE-treated 4T1 mouse breast cancer cells (NE CM) significantly up-regulated M2 markers in RAW 264.7 cells, suggesting that NE-regulated cancer cell secretome stimulated M2 polarization. However, such increase was abrogated by DSTE. NE CM also induced phosphorylation of signal transducer and activator of transcription 6 (STAT6) in RAW 264.7 cells, which was clearly reversed by pretreatment with DSTE, demonstrating that DSTE inhibited M2 polarization by inactivating STAT6. Finally, M2-polarized RAW264.7 cells by NE CM markedly increased the migration of 4T1 cells. However, such increase was completely reversed by co-treating RAW264.7 cells with NE CM and DSTE, indicating that DSTE attenuated cancer cell migration by blocking M2 polarization. Taken together, our results suggest a probable use of DSTE for cancer patients under chronic stress by regulating M2 macrophage polarization.

The Cytotoxicity of Kahweol in HT-29 Human Colorectal Cancer Cells Is Mediated by Apoptosis and Suppression of Heat Shock Protein 70 Expression

  • Choi, Dong Wook;Lim, Man Sup;Lee, Jae Won;Chun, Wanjoo;Lee, Sang Hyuk;Nam, Yang Hoon;Park, Jin Myung;Choi, Dae Hee;Kang, Chang Don;Lee, Sung Joon;Park, Sung Chul
    • Biomolecules & Therapeutics
    • /
    • 제23권2호
    • /
    • pp.128-133
    • /
    • 2015
  • Although coffee is known to have antioxidant, anti-inflammatory, and antitumor properties, there have been few reports about the effect and mechanism of coffee compounds in colorectal cancer. Heat shock proteins (HSPs) are molecular chaperones that prevent cell death. Their expression is significantly elevated in many tumors and is accompanied by increased cell proliferation, metastasis and poor response to chemotherapy. In this study, we investigated the cytotoxicity of four bioactive compounds in coffee, namely, caffeine, caffeic acid, chlorogenic acid, and kahweol, in HT-29 human colon adenocarcinoma cells. Only kahweol showed significant cytotoxicity. Specifically, kahweol increased the expression of caspase-3, a pro-apoptotic factor, and decreased the expression of anti-apoptotic factors, such as Bcl-2 and phosphorylated Akt. In addition, kahweol significantly attenuated the expression of HSP70. Inhibition of HSP70 activity with triptolide increased kahweol-induced cytotoxicity. In contrast, overexpression of HSP70 significantly reduced kahweol-induced cell death. Taken together, these results demonstrate that kahweol inhibits colorectal tumor cell growth by promoting apoptosis and suppressing HSP70 expression.