Browse > Article
http://dx.doi.org/10.5487/TR.2010.26.4.245

Epithelial-mesenchymal Transition and Cell Invasion  

Son, Hwa-Jin (College of Pharmacy, Duksung Women's University)
Moon, Aree (College of Pharmacy, Duksung Women's University)
Publication Information
Toxicological Research / v.26, no.4, 2010 , pp. 245-252 More about this Journal
Abstract
Epithelial-mesenchymal transition (EMT) is a complex process in which epithelial cells acquire the characteristics of invasive mesenchymal cells. EMT has been implicated in cancer progression and metastasis as well as the formation of many tissues and organs during development. Epithelial cells undergoing EMT lose cell-cell adhesion structures and polarity, and rearrange their cytoskeletons. Several oncogenic pathways such as transforming growth factor (TGF)-$\beta$, Wnt, and Notch signaling pathways, have been shown to induce EMT. These pathways have activated transcription factors including Snail, Slug, and the ZEB family which work as transcriptional repressors of E-cadherin, thereby making epithelial cells motile and resistant to apoptosis. Mounting evidence shows that EMT is associated with cell invasion and tumor progression. In this review, we summarize the characteristic features of EMT, pathways leading to EMT, and the role of EMT in cell invasion. Three topics are addressed in this review: (1) Definition of EMT, (2) Signaling pathways leading to EMT, (3) Role of EMT in cell invasion. Understanding the role of EMT in cell invasion will provide valuable information for establishing strategies to develop anti-metastatic therapeutics which modulate malignant cellular processes mediated by EMT.
Keywords
EMT; cell invasion; TGF-$\beta$; Wnt; Notch;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Xu, J., Lamouille, S. and Derynck, R. (2009). TGF-beta-induced epithelial to mesenchymal transition. Cell Res., 19, 156-172.   DOI   ScienceOn
2 Yee, D.S., Tang, Y., Li, X., Liu, Z., Guo, Y., Ghaffar, S., McQueen, P., Atreya, D., Xie, J., Simoneau, A.R., Hoang, B.H. and Zi, X. (2010). The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition. Mol. Cancer, 9, 162.   DOI   ScienceOn
3 Yi, J.Y., Shin, I. and Arteaga, C.L. (2005). Type I transforming growth factor beta receptor binds to and activates phosphatidylinositol 3-kinase. J. Biol. Chem., 280, 10870-10876.   DOI   ScienceOn
4 Yook, J.I., Li, X.Y., Ota, I., Fearon, E.R. and Weiss, S.J. (2005). Wnt-dependent regulation of the E-cadherin repressor snail. J. Biol. Chem., 280, 11740-11748.   DOI   ScienceOn
5 Yu, L., Hébert, M.C. and Zhang, Y.E. (2002). TGF-beta receptoractivated p38 MAP kinase mediates Smad-independent TGFbeta responses. EMBO J., 21, 3749-3759.   DOI   ScienceOn
6 Zavadil, J. and Bottinger, E.P. (2005). TGF-beta and epithelial-tomesenchymal transitions. Oncogene, 24, 5764-5774.   DOI   ScienceOn
7 Zavadil, J., Cermak, L., Soto-Nieves, N. and Bottinger, E.P. (2004). Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J., 23, 1155-1165.   DOI   ScienceOn
8 Zavadil, J., Narasimhan, M., Blumenberg, M. and Schneider, R.J. (2007). Transforming growth factor-beta and microRNA: mRNA regulatory networks in epithelial plasticity. Cells Tissues Organs, 185, 157-161.   DOI   ScienceOn
9 Timmerman, L.A., Grego-Bessa, J., Raya, A., Bertran, E., Perez-Pomares, J.M., Diez, J., Aranda, S., Palomo, S., McCormick, F., Izpisua-Belmonte, J.C. and de la Pompa, J.L. (2004). Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev., 18, 99-115.   DOI   ScienceOn
10 Trelstad, R.L., Hay, E.D. and Revel, J.D. (1967). Cell contact during early morphogenesis in the chick embryo. Dev. Biol., 16, 78-106.   DOI   ScienceOn
11 Saika, S., Kono-Saika, S., Ohnishi, Y., Sato, M., Muragaki, Y., Ooshima, A., Flanders, K.C., Yoo, J., Anzano, M., Liu, C.Y., Kao, W.W. and Roberts, A.B. (2004). Smad3 signaling is required for epithelial-mesenchymal transition of lens epithelium after injury. Am. J. Pathol., 164, 651-663.   DOI   ScienceOn
12 Santibanez, J.F. (2006). JNK mediates TGF-beta1-induced epithelial mesenchymal transdifferentiation of mouse transformed keratinocytes. FEBS Lett., 580, 5385-5391.   DOI   ScienceOn
13 Sarbassove, D.D., Ali, S.M., and Sabatini, D.M. (2005). Growing roles for the mTOR pathway. Curr. Opin. Cell Biol., 17, 596-603.   DOI   ScienceOn
14 Sato, M., Muragaki, Y., Saika, S., Roberts, A.B. and Ooshima, A. (2003). Targeted disruption of TGF-$\beta$1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J. Clin. Invest., 112, 1486-1494.   DOI
15 Schilling, S.H., Hjelemeland, A.B., Rich, J.N. and Wang, X.F. (2008). TGF-$\beta$ Family (eds. Derynck, R., and Miyazono, K.). Cold Spring Harbor Laboratory Pres, New York, pp. 45-78.
16 Snoek-van Beurden, P.A. and Von den Hoff, J.W. (2005). Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. Biotechniques, 38, 73-83.   DOI
17 Oft, M., Heider, K.H. and Beug, H. (1998). TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr. Biol., 8, 1243-1252.   DOI   ScienceOn
18 Nawshad, A., Medici, D., Liu, C.C. and Hay, E.D. (2007). TGFbeta3 inhibits E-cadherin gene expression in palate medialedge epithelial cells through a Smad2-Smad4-LEF1 transcription complex. J. Cell. Sci., 120, 1646-1653.   DOI   ScienceOn
19 Nishihara, A., Hanai, J.I., Okamoto, N., Yanagisawa, J., Kato, S., Miyazono, K. and Kawabata, M. (1998). Role of p300, a transcriptional coactivator, in signalling of TGF-beta. Genes Cells, 3, 613-623.   DOI   ScienceOn
20 Noel, A., Boulay, A., Kebers, F., Kannan, R., Hajitou, A., Calberg-Bacq, C.M., Basset, P., Rio, M.C. and Foidart, J.M. (2000). Demonstration in vivo that stromelysin-3 functions through its proteolytic activity. Oncogene,19, 1605-1612.   DOI
21 Lehmann, K., Janda, E., Pierreux, C.E., Rytömaa, M., Schulze, A., McMahon, M., Hill, C.S., Beug, H. and Downward, J. (2000). Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev., 14, 2610-2622.   DOI
22 Lewis-Tuffin, L.J., Rodriguez, F., Giannini, C., Scheithauer, B., Necela, B.M., Sarkaria, J.N. and Anastasiadis, P.Z. (2010). Misregulated e-cadherin expression associated with an aggressive brain tumor phenotype. PLoS One., 5, e13665.   DOI   ScienceOn
23 Lien, S.C., Usami, S., Chien, S. and Chiu, J.J. (2006). Phosphatidylinositol 3-kinase/Akt pathway is involved in transforming growth factor-beta1-induced phenotypic modulation of 10T1/2 cells to smooth muscle cells. Cell Signal, 18, 1270-1278.   DOI   ScienceOn
24 Valcourt, U., Kowanetz, M., Niimi, H., Heldin, C.H. and Moustakas, A. (2005). TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol. Biol. Cell, 16, 1987-2002.   DOI   ScienceOn
25 Zhou, B.P., Deng, J., Xia, W., Xu, J., Li, Y.M., Gunduz, M. and Hung, M.C. (2004). Dual regulation of Snail by GSK-3betamediated phosphorylation in control of epithelial-mesenchymal transition. Nat. Cell Biol., 6, 931-940.   DOI   ScienceOn
26 Trimboli, A.J., Fukino, K., de Bruin, A., Wei, G., Shen, L., Tanner, S.M., Creasap, N., Rosol, T.J., Robinson, M.L., Eng, C., Ostrowski, M.C. and Leone, G. (2008). Direct evidence for epithelial- mesenchymal transitions in breast cancer. Cancer Res., 68, 937-945.   DOI   ScienceOn
27 Uttamsingh, S., Bao, X., Nguyen, K.T., Bhanot, M., Gong, J., Chan, J.L., Liu, F., Chu, T.T. and Wang, L.H. (2008). Synergistic effect between EGF and TGF-beta1 in inducing oncogenic properties of intestinal epithelial cells. Oncogene, 27, 2626-2634.   DOI   ScienceOn
28 Voulgari, A. and Pintzas, A. (2009). Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim. Biophys. Acta., 1796, 75-90.
29 Vuoriluoto, K., Haugen, H., Kiviluoto, S., Mpindi, J.P., Nevo, J., Gjerdrum, C., Tiron, C., Lorens, J.B. and Ivaska, J. (2010). Vimentin regulates EMT induction by Slug and oncogenic HRas and migration by governing Axl expression in breast cancer. Oncogene, Epub ahead of print.
30 Wang, Z., Banerjee, S., Li, Y., Rahman, K.M., Zhang, Y. and Sarkar, F.H. (2006). Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. Cancer Res., 66, 2778-2784.   DOI   ScienceOn
31 Wick, W., Platten, M. and Weller, M. (2001). Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J. Neurooncol., 53, 177-185.   DOI   ScienceOn
32 Perez-Moreno, M., Jamora, C. and Fuchs, E. (2003). Sticky business: orchestrating cellular signals at adherens junctions. Cell, 112, 535-548.   DOI   ScienceOn
33 Somiari, S.B., Somiari, R.I., Heckman, C.M., Olsen, C.H., Jordan, R.M., Russell, S.J. and Shriver, C.D. (2006). Circulating MMP2 and MMP9 in breast cancer -- potential role in classification of patients into low risk, high risk, benign disease and breast cancer categories. Int. J. Cancer, 119, 1403-1411.   DOI   ScienceOn
34 Song, H., Ki, S.H., Kim, S.G. and Moon, A. (2006). Activating transcription factor 2 mediates matrix metalloproteinase-2 transcriptional activation induced by p38 in breast epithelial cells. Cancer Res., 66, 10487-10496.   DOI   ScienceOn
35 Peinado, H., Olmeda, D. and Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nature Reviews Cancer, 7, 415-428.   DOI   ScienceOn
36 Piek, E., Moustakas, A., Kurisaki, A., Heldin, C.H. and Ten Dijke, P. (1999). TGF-β type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J. Cell Sci., 112, 4557-4568.
37 Platten, M., Wick, W. and Weller, M. (2001). Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc. Res. Tech., 52, 401-410.   DOI   ScienceOn
38 Pon, Y.L., Zhou, H.Y., Cheung, A.N., Ngan, H.Y. and Wong, A.S. (2008). p70 S6 kinase promotes epithelial to mesenchymal transition through snail induction in ovarian cancer cells. Cancer Res., 68, 6524-6532.   DOI   ScienceOn
39 Radisky, E.S. and Radisky, D.C. (2010). Matrix metalloproteinaseinduced epithelial-mesenchymal transition in breast cancer. J. Mammary Gland Biol. Neoplasia., 15, 201-212.   DOI   ScienceOn
40 Lin, C.C., Chiang, L.L., Lin, C.H., Shih, C.H., Liao, Y.T., Hsu, M.J. and Chen, B.C. (2007). Transforming growth factor-beta1 stimulates heme oxygenase-1 expression via the PI3K/Akt and NF-kappaB pathways in human lung epithelial cells. Eur. J. Pharmacol., 560, 101-109.   DOI   ScienceOn
41 Liu, D., Nakano, J., Ishikawa, S., Yokomise, H., Ueno, M., Kadota, K., Urushihara, M. and Huang, C.L. (2007). Overexpression of matrix metalloproteinase-7 (MMP-7) correlates with tumor proliferation, and a poor prognosis in non-small cell lung cancer. Lung Cancer, 58, 384-391.   DOI   ScienceOn
42 Massague, J. and Chen, Y.G. (2000). Controlling TGF-beta signaling. Genes Dev., 14, 627-644.
43 McConkey, D.J., Choi, W., Marquis, L., Martin, F., Williams, M.B., Shah, J., Svatek, R., Das, A., Adam, L., Kamat, A., Siefker-Radtke, A. and Dinney, C. (2009). Role of epithelial-tomesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev., 28, 335-344.   DOI
44 McGuire, J.K., Li, Q. and Parks, W.C. (2003). Matrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium. Am. J. Pathol., 162, 1831-1843.   DOI   ScienceOn
45 Ju, W., Ogawa, A., Heyer, J., Nierhof, D., Yu, L., Kucherlapati, R., Shafritz, D.A. and Böttinger, E.P. (2006). Deletion of Smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation. Mol. Cell. Biol., 26, 654-667.   DOI   ScienceOn
46 Kalluri, R. and Neilson, E.G. (2003). Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest., 112, 1776-1784.   DOI
47 Kang, Y. and Massague, J. (2004). Epithelial-mesenchymal transitions: twist in development and metastasis. Cell, 118, 277-279.   DOI   ScienceOn
48 Grande, M., Franzen, A., Karlsson, J.O., Ericson, L.E., Heldin, N.E. and Nilsson, M. (2002). Transforming growth factor-beta and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. J. Cell. Sci., 115, 4227-4236.   DOI
49 Ghoul, A., Serova, M., Astorgues-Xerri, L., Bieche, I., Bousquet, G., Varna, M., Vidaud, M., Phillips, E., Weill, S., Benhadji, K.A., Lokiec, F., Cvitkovic, E., Faivre, S. and Raymond, E. (2009). Epithelial-to-mesenchymal transition and resistance to ingenol 3-angelate, a novel protein kinase C modulator, in colon cancer cells. Cancer Res., 69, 4260-4269.   DOI   ScienceOn
50 Gotzmann, J., Mikula, M., Eger, A., Schulte-Hermann, R., Foisner, R., Beug, H. and Mikulits, W. (2004). Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis. Mutat. Res., 566, 9-20.   DOI   ScienceOn
51 Greenburg, G. and Hay, E.D. (1982). Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J. Cell. Biol., 95, 333-339.   DOI
52 Greenburg, G. and Hay, E.D. (1986). Cytodifferentiation and tissue phenotype change during transformation of embryonic lens epithelium to mesenchyme-like cells in vitro. Dev. Biol., 115, 363-379.   DOI   ScienceOn
53 Grunert, S., Jechlinger, M. and Beug, H. (2003). Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat. Rev. Mol. Cell. Biol., 4, 657-665.   DOI   ScienceOn
54 Brabletz, T., Jung, A., Reu, S., Porzner, M., Hlubek, F., Kunz-Schughart, L.A., Knuechel, R. and Kirchner, T. (2001). Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc. Natl. Acad. Sci., 98, 10356-10361.   DOI   ScienceOn
55 Takkunen, M., Grenman, R., Hukkanen, M., Korhonen, M., García de Herreros, A. and Virtanen, I. (2006). Snail-dependent and - independent epithelial-mesenchymal transition in oral squamous carcinoma cells. J. Histochem. Cytochem., 54, 1263-1275.   DOI   ScienceOn
56 Xie, L., Law, B.K., Chytil, A.M., Brown, K.A., Aakre, M.E. and Moses, H.L. (2004). Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia, 6, 603-610.   DOI   ScienceOn
57 Song, W., Jackson, K. and McGuire, P.G. (2000). Degradation of type IV collagen by matrix metalloproteinases is an important step in the epithelial-mesenchymal transformation of the endocardial cushions. Dev. Biol., 227, 606-617.   DOI   ScienceOn
58 Taki, M., Kamata, N., Yokoyama, K., Fujimoto, R., Tsutsumi, S. and Nagayama, M. (2003). Down-regulation of Wnt-4 and upregulation of Wnt-5a expression by epithelial-mesenchymal transition in human squamous carcinoma cells. Cancer Sci., 94, 593-597.   DOI   ScienceOn
59 Tavares, A.L., Mercado-Pimentel, M.E., Runyan, R.B. and Kitten, G.T. (2006). TGF-$\beta$-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart. Dev. Dyn., 235, 1589-1598.   DOI   ScienceOn
60 Thiery, J.P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer, 2, 442-454.   DOI   ScienceOn
61 Thiery, J.P. (2003). Epithelial-mesenchymal transitions in development and pathologies. Curr. Opin. Cell. Biol., 15, 740-746.   DOI   ScienceOn
62 Thiery, J.P. and Morgan, M. (2004). Breast cancer progression with a Twist. Nat. Med., 10, 777-778.   DOI   ScienceOn
63 Micalizzi, D.S., Farabaugh, S.M. and Ford, H.L. (2010). Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J. Mammary Gland Biol. Neoplasia, 15, 117-134.   DOI
64 Radisky, D.C., Levy, D.D., Littlepage, L.E., Liu, H., Nelson, C.M., Fata, J.E., Leake, D., Godden, E.L., Albertson, D.G., Nieto, M.A., Werb, Z. and Bissell, M.J. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123-127.   DOI   ScienceOn
65 Reiss, M. and Barcellos-Hoff, M.H. (1997). Transforming growth factor-beta in breast cancer: a working hypothesis. Breast Cancer Res. Treat., 45, 81-95.   DOI   ScienceOn
66 Roger, L., Jullien, L., Gire, V. and Roux, P. (2010). Gain of oncogenic function of p53 mutants regulates E-cadherin expression uncoupled from cell invasion in colon cancer cells. J. Cell Sci., 123, 1295-1305.   DOI   ScienceOn
67 Morgia, G., Falsaperla, M., Malaponte, G., Madonia, M., Indelicato, M., Travali, S. and Mazzarino, M.C. (2005). Matrix metalloproteinases as diagnostic (MMP-13) and prognostic (MMP-2, MMP-9) markers of prostate cancer. Urol Res., 33, 44-50.   DOI
68 Moustakas, A. and Heldin, C.H. (2005). Non-Smad TGF-beta signals. J. Cell Sci., 118, 3573-3584.   DOI   ScienceOn
69 Moustakas, A. and Heldin, C.H. (2007). Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and caner progression. Cancer Sci., 98, 1512-1520.   DOI   ScienceOn
70 Nawshad, A., Lagamba, D., Polad, A. and Hay, E.D. (2005). Transforming growth factor-beta signaling during epithelialmesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells Tissues Organs, 179, 11-23.   DOI   ScienceOn
71 Lamouille, S. and Derynck, R. (2007). Cell size and invasion in TGF-$\beta$-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J. Cell Biol., 178, 437-451.   DOI   ScienceOn
72 Kim, E.S., Kim, M.S. and Moon, A. (2005). Transforming growth factor (TGF)-beta in conjunction with H-ras activation promotes malignant progression of MCF10A breast epithelial cells. Cytokine, 29, 84-91.   DOI   ScienceOn
73 Kim, M.S., Lee, E.J., Kim, H.R. and Moon, A. (2003). p38 kinase is a key signaling molecule for H-Ras-induced cell motility and invasive phenotype in human breast epithelial cells. Cancer Res., 63, 5454-5461.
74 Kim, M.A., Lee, H.S., Lee, H.E., Kim, J.H., Yang, H.K. and Kim, W.H. (2009). Prognostic importance of epithelial-mesenchymal-related protein expression in gastric carcinoma. Histopathology, 54, 442-451.   DOI   ScienceOn
75 Larue, L. and Bellacosa, A. (2005). Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene, 24, 7443-7454.   DOI   ScienceOn
76 Lee, M.K., Pardoux, C., Hall, M.C., Lee, P.S., Warburton, D., Qing, J., Smith, S.M. and Derynck, R. (2007). TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J., 26, 3957-3967.   DOI   ScienceOn
77 Hay, E.D. (1968). Organization and fine structure of epithelium and mesenchyme in the developing chick embryo. In Epithelial-Mesenchymal Interactions; 18th Hahnemann Symposium, (eds. R. Fleischmajer, & R. E. Billingham), Williams & Wilkins, Baltimore.
78 Hay, E.D. (1995). An overview of epithelio-mesenchymal transformation. Acta. Anat., 154, 8-20.   DOI
79 Hay, E.D. (2005). The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev. Dyn., 233, 706-720.   DOI   ScienceOn
80 Cano, A., Pérez-Moreno, M.A., Rodrigo, I., Locascio, A., Blanco, M.J., del Barrio, M.G., Portillo, F. and Nieto, M.A. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol., 2, 76-83.   DOI   ScienceOn
81 Christiansen, J.J. and Rajasekaran, A.K. (2006). Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res., 66, 8319-8326.   DOI   ScienceOn
82 Christofori, G. (2006). New signals from the invasive front. Nature, 441, 444-450.   DOI   ScienceOn
83 Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., Mareel, M., Huylebroeck, D. and van Roy, F. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol. Cell, 7, 1267-1278.   DOI   ScienceOn
84 Conacci-Sorrell, M., Simcha, I., Ben-Yedidia, T., Blechman, J., Savagner, P. and Ben-Ze’ev, A. (2003). Autoregulation of Ecadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J. Cell Biol., 163, 847-857.   DOI   ScienceOn
85 Cordon-Cardo, C. and Prives, C. (1999). At the crossroads of inflammation and tumorigenesis. J. Exp. Med., 190, 1367-1370.   DOI
86 Davies, M., Robinson, M., Smith, E., Huntley, S., Prime, S. and Paterson, I. (2005). Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-beta1 involves MAPK, Smad and AP-1 signalling pathways. J. Cell Biochem., 95, 918-931.   DOI   ScienceOn
87 Derynck, R. and Zhang, Y.E. (2003). Smad-dependent and Smadindependent pathways in TGF-b family signalling. Nature, 425, 577-584.   DOI   ScienceOn
88 Huber, M.A., Kraut, N. and Beug, H. (2005). Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell. Biol., 17, 548-558.   DOI   ScienceOn
89 Heldin, C.H., Miyazono, K. and ten Dijke, P. (1997). TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature, 390, 465-471.   DOI   ScienceOn
90 Hoot, K.E., Lighthall, J., Han, G., Lu, S.L., Li, A., Ju, W., Kulesz-Martin, M., Bottinger, E. and Wang, X.J. (2008). Keratinocytespecific Smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression. J. Clin. Invest., 118, 2722-2732.
91 Humar, B., Blair, V., Charlton, A., More, H., Martin, I. and Guilford, P. (2009). E-cadherin deficiency initiates gastric signetring cell carcinoma in mice and man. Cancer Res., 69, 2050-2056.   DOI   ScienceOn
92 Illman, S.A., Lehti, K., Keski-Oja, J. and Lohi, J.(2006). Epilysin (MMP-28) induces TGF-beta mediated epithelial to mesenchymal transition in lung carcinoma cells. J. Cell Sci., 119, 3856-3865.   DOI   ScienceOn
93 Jones, L.E., Humphreys, M.J., Campbell, F., Neoptolemos, J.P. and Boyd, M.T. (2004). Comprehensive analysis of matrix metalloproteinase and tissue inhibitor expression in pancreatic cancer: increased expression of matrix metalloproteinase-7 predicts poor survival. Clin. Cancer Res., 10, 2832-2845.   DOI   ScienceOn
94 Duong, T.D. and Erickson, C.A. (2004). MMP-2 plays an essential role in producing epithelial-mesenchymal transformations in the avian embryo. Dev. Dyn., 229, 42-53.   DOI   ScienceOn
95 Feng, X.H. and Derynck, R. (2005). Specificity and versatility in TGF-beta signaling through Smads. Annu. Rev. Cell Dev. Biol., 21, 659-693.   DOI   ScienceOn
96 Bakin, A.V., Tomlinsos, A.K., Bhowmick, N.A., Moses, H.L. and Arteaga, C.L. (2000). Phosphatidylinositol 3-kinase function is required for transforming growth factor-a-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem., 275, 36803-36810.   DOI   ScienceOn
97 Adam, L., Zhong, M., Choi, W., Qi, W., Nicoloso, M., Arora, A., Calin, G., Wang, H., Siefker-Radtke, A., McConkey, D., Bar-Eli, M. and Dinney, C. (2009). miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clinical Cancer Research, 15, 5060-5072.   DOI   ScienceOn
98 Akiyoshi, S., Inoue, H., Hanai, J., Kusanagi, K., Nemoto, N., Miyazono, K. and Kawabata, M. (1999). c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads. J. Biol. Chem., 274, 35269-35277.   DOI   ScienceOn
99 Bakin, A.V., Rinehart, C., Tomlinson, A.K. and Arteaga, C.L. (2002). p38 mitogen-activated protein kinase is required for TGFβ-mediated fibroblastic transdifferentiation and cell migration. J.Cell Sci., 115, 3193-3206.
100 Balkwill, F. (2004). Cancer and the chemokine network. Nat. Rev. Cancer, 4, 540-550.   DOI   ScienceOn
101 Batlle, E., Sancho, E., Francí, C., Domínguez, D., Monfar, M., Baulida, J. and García De Herreros, A. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell. Biol., 2, 84-89.   DOI   ScienceOn
102 Boyer, B., Valles, A.M. and Edme, N. (2000). Induction and regulation of epithelial-mesenchymal transitions. Biochem. Pharmacol., 60, 1091-1099.   DOI   ScienceOn
103 Brabletz, T., Hlubek, F., Spaderna, S., Schmalhofer, O., Hiendlmeyer, E., Jung, A. and Kirchner T. (2005). Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs, 179, 56-65.   DOI   ScienceOn