• 제목/요약/키워드: anti-neuroinflammation

검색결과 72건 처리시간 0.025초

Quinic Acid Alleviates Behavior Impairment by Reducing Neuroinflammation and MAPK Activation in LPS-Treated Mice

  • Yongun Park;Yunn Me Me Paing;Namki Cho;Changyoun Kim;Jiho Yoo;Ji Woong Choi;Sung Hoon Lee
    • Biomolecules & Therapeutics
    • /
    • 제32권3호
    • /
    • pp.309-318
    • /
    • 2024
  • Compared to other organs, the brain has limited antioxidant defenses. In particular, the hippocampus is the central region for learning and memory and is highly susceptible to oxidative stress. Glial cells are the most abundant cells in the brain, and sustained glial cell activation is critical to the neuroinflammation that aggravates neuropathology and neurotoxicity. Therefore, regulating glial cell activation is a promising neurotherapeutic treatment. Quinic acid (QA) and its derivatives possess anti-oxidant and anti-inflammatory properties. Although previous studies have evidenced QA's benefit on the brain, in vivo and in vitro analyses of its anti-oxidant and anti-inflammatory properties in glial cells have yet to be established. This study investigated QA's rescue effect in lipopolysaccharide (LPS)-induced behavior impairment. Orally administering QA restored social impairment and LPS-induced spatial and fear memory. In addition, QA inhibited proinflammatory mediator, oxidative stress marker, and mitogen-activated protein kinase (MAPK) activation in the LPS-injected hippocampus. QA inhibited nitrite release and extracellular signal-regulated kinase (ERK) phosphorylation in LPS-stimulated astrocytes. Collectively, QA restored impaired neuroinflammation-induced behavior by regulating proinflammatory mediator and ERK activation in astrocytes, demonstrating its potential as a therapeutic agent for neuroinflammation-induced brain disease treatments.

Botulinum Toxin A Ameliorates Neuroinflammation in the MPTP and 6-OHDA-Induced Parkinson's Disease Models

  • Ham, Hyeon Joo;Yeo, In Jun;Jeon, Seong Hee;Lim, Jun Hyung;Yoo, Sung Sik;Son, Dong Ju;Jang, Sung-Su;Lee, Haksup;Shin, Seung-Jin;Han, Sang Bae;Yun, Jae Suk;Hong, Jin Tae
    • Biomolecules & Therapeutics
    • /
    • 제30권1호
    • /
    • pp.90-97
    • /
    • 2022
  • Recently, increasing evidence suggests that neuroinflammation may be a critical factor in the development of Parkinson's disease (PD) in addition to the ratio of acetylcholine/dopamine because dopaminergic neurons are particularly vulnerable to inflammatory attack. In this study, we investigated whether botulinum neurotoxin A (BoNT-A) was effective for the treatment of PD through its anti-neuroinflammatory effects and the modulation of acetylcholine and dopamine release. We found that BoNT-A ameliorated MPTP and 6-OHDA-induced PD progression, reduced acetylcholine release, levels of IL-1β, IL-6 and TNF-α as well as GFAP expression, but enhanced dopamine release and tyrosine hydroxylase expression. These results indicated that BoNT-A had beneficial effects on MPTP or 6-OHDA-induced PD-like behavior impairments via its anti-neuroinflammation properties, recovering dopamine, and reducing acetylcholine release.

Microglia and neuroinflammation: implications in neurodegenerative diseases

  • Suk, Kyoung-Ho
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2007년도 Proceedings of The Convention of The Korean Society of Applied Pharmacology
    • /
    • pp.15-22
    • /
    • 2007
  • Increasing evidence indicates that microglia-driven chronic inflammatory responses playa pathological role in the central nervous system. Activation of microglia is pivotal in the initiation and progression of neuroinflammation. Inhibition of the microglial activation may provide an effective therapeutic intervention that alleviates the progression of the neurodegenerative diseases. Anti-inflammatory agents may be a useful candidate for such a therapeutic approach. Continual investigation of the mechanisms underlying microglial activation and regulation of neuroinflammation by endogenous or exogenous factors would not only lead to the discovery of novel neuroprotective agents, but also help to understand complex pathophysiology of neurodegenerative diseases.

  • PDF

여주의 페놀성 화합물인 Protocatechuic Acid의 산화적 스트레스 개선 및 신경염증 보호 효과 (Protective Effect of Protocatechuic Acid, Phenolic Compound of Momordica Charantia, against Oxidative Stress and Neuroinflammation in C6 Glial Cell)

  • 김지현;최정란;조은주;김현영
    • 한방비만학회지
    • /
    • 제20권1호
    • /
    • pp.10-19
    • /
    • 2020
  • Objectives: Oxidative stress-mediated neuroinflammation has been supposed as a crucial factor that contributes to the pathogenesis of many neurodegenerative diseases. In this study, we aimed to investigate the protective activity against oxidative stress and neuroinflammation of protocatechuic acid (PA), active phenolic compound from Momordica Charantia. Methods: Protective activity of PA from oxidative stress was performed under in vitro conditions. Our study investigated the protective mechanism of PA from neuroinflammation in cellular system using C6 glial cell. To investigate the improvement the effects on oxidative stress and neuroinflammation, we induced oxidative stress by H2O2 (100 μM) stimulation and induced neuroinflammation by treatment with lipopolysaccharide (LPS) (1 ㎍/mL) and interferon-gamma (IFN-γ) (10 ng/mL) in C6 glial cells. Results: PA showed strong radical scavenging effect against 1,1-dipenyl-2-picrylhydrazyl, hydroxy radical (·OH) and nitric oxide (NO). Under oxidative stress treated by H2O2, the result showed the increased mRNA expressions of oxidative stress markers such as nuclear factor-kappaB (NF-κB), cyclooxygenase (COX-2) and inducible nitric oxide (iNOS). However, the treatment of PA led to reduced mRNA expressions of NF-κB, COX-2 and iNOS. Moreover, PA attenuated the production of interleukin-6 and scavenged NO generated by both endotoxin LPS and IFN-γ together. Furthermore, it also reduced LPS and IFN-γ-induced mRNA expressions of iNOS and COX-2. Conclusions: In conclusion, our results collectively suggest that PA, phenolic compound of Momordica Charantia, could be a safe anti-oxidant and a promising anti-neuroinflammatory molecule for neurodegenerative diseases.

포도잎으로부터 분리된 Quercetin-3-O-glucuronide의 LPS로 유도된 BV2 미세아교세포에서의 항염증 효과 (Anti-neuroinflammatory Effects of Quercetin-3-O-glucuronide Isolated from the Leaf of Vitis labruscana on LPS-induced Neuroinflammation in BV2 Cells)

  • 윤치수;김동철;고원민;김경수;이동성;김대성;조형권;서정원;김성연;오현철;김윤철
    • 생약학회지
    • /
    • 제45권1호
    • /
    • pp.17-22
    • /
    • 2014
  • Grapes has long been used for food, and reported as containing polyphenol which has antioxidant and anti-cancer effects. Neuroinflammation is chronic inflammation at the brain, lead to neurodegenerative diseases. In this study, quercetin-3-O-glucuronide (QG) isolated from the leaf of Vitis labruscana has anti-neuroinflammatory effects. QG were investigated using MTT assay, western blot, nitric oxide (NO) assay, prostaglandin $E_2$ ($PGE_2$) assay, cytokine assay in lipopolysaccharide (LPS)-induced inflammation in BV2 cells. QG dose-dependently attenuated the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), accordingly inhibited the production of NO and $PGE_2$. QG decreases the levels of proinflammatory cytokine such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interlukin-$1{\beta}$ (IL-$1{\beta}$). Thereby, QG may offer therapeutic potential for treatment of neurodegenerative disease related to neuroinflammation.

Lipopolysccharides에 의해 활성화된 미세아교세포에서 수질(水蛭) 추출물의 NF-kB 억제를 통한 뇌신경염증 억제 효과 (Inhibitory Effect of Hirudo on Neuroinflammation in LPS-stimulated Microglial Cells)

  • 박건혁;양선규;문병철;노수민;임혜선
    • 한국환경과학회지
    • /
    • 제32권4호
    • /
    • pp.259-266
    • /
    • 2023
  • Today, environmental pollution has been found to be one of the causes of various diseases, including brain and nervous system diseases. In particular, neurodegenerative diseases have been found to be caused by hyperactivation of immune system cells such as microglia. Preventive and therapeutic measures are needed to suppress them. Hirudo is known as a traditional herbal medicine, based on its multiple biological activities such as anti-eczema and anti-coagulation. In the present study, the anti-neuroinflammatory potential of hirudo extract was investigated in lipopolysccharide (LPS)-stimulated BV2 microglial cells and in mice. Hirudo extract significantly inhibited LPS-stimulated nitric oxide (NO) production and cytokine (IL-1Ra, KC, MCP-5, and RANTES) expression in a dose-dependent manner without causing cytotoxicity. Pretreatment with hirudo extract suppressed LPS-induced NF-κB p65 nuclear translocation. Moreover, hirudo extract reduced LPS-stimulated microglial acitivation and improved memory impairments. The results demonstrated that hirudo extract exerts anti-neuroinflammation activities, partly through inhibition of the NF-κB signaling pathway. These findings suggest that hirudo extract might have therapeutic potential with respect to neuroinflammation and neurodegenerative diseases.

LPS에 의해 활성화된 미세아교세포에서 미역쇠 추출물의 신경염증 보호 효과 (Inhibitory effect of Petalonia binghamiae on neuroinflammation in LPS-stimulated microglial cells)

  • 박재현;김성훈;이선령
    • Journal of Nutrition and Health
    • /
    • 제50권1호
    • /
    • pp.25-31
    • /
    • 2017
  • 퇴행성 뇌신경 질환의 원인이 되는 것으로 알려진 미세아교세포의 과도한 활성화에 의한 신경염증반응에 미치는 미역쇠의 보호 효과를 알아보기 위해 LPS를 처리한 BV2 세포에서 미역쇠에서 얻은 에탄올 추출물을 이용하여 실험을 수행하였다. 미세아교세포의 활성화를 유도하는 LPS의 처리는 신경염증반응의 지표인 NO의 생성량과 이들을 조절하는 iNOS, COX-2의 발현을 증가시켰다. 미역쇠 추출물의 처리는 LPS가 유도하는 NO의 생성량을 농도 의존적으로 억제하였고 iNOS와 COX-2의 발현을 억제하여 NO 생성량 저해와 유사한 양상의 결과를 나타내었다. 미역쇠 추출물의 신경 염증반응 저해 효과가 $NF-{\kappa}B$의 활성화 조절을 통해 일어나는지를 알아보기 위해 $NF-{\kappa}B$의 핵으로의 전이, $I{\kappa}B$의 인산화, $NF-{\kappa}B$ 억제제인 PDTC를 이용한 NO의 생성량에 미치는 효과를 확인하였다. 미역쇠 추출물 처리에 의해 핵분획물에서의 $NF-{\kappa}B$ 발현은 현저히 감소하였고 $I{\kappa}B$의 인산화를 억제하였으며 PDTC의 처리로 NO의 생성량은 감소하였다. 이상의 결과는 미세아교세포의 활성화로 인해 발생되는 신경염증반응에 미역쇠 추출물이 $NF-{\kappa}B$의 활성 억제를 통해 NO의 생성을 저해함으로써 항신경염증 효과가 있음을 보여주는 것으로 미역쇠 추출물이 신경염증 관련 뇌신경 질환의 제어하는데 있어서 치료효과를 가지는 소재로서 이용 가능성에 대한 정보를 제공할 것으로 사료된다.

Flavonoids as anti-inflammatory and neuroprotective agents

  • Lee, Heesu;Selvaraj, Baskar;Yoo, Ki Yeon;Ko, Seong-Hee
    • International Journal of Oral Biology
    • /
    • 제45권2호
    • /
    • pp.33-41
    • /
    • 2020
  • Neuroinflammation is known as the main mechanism implicated in the advancement of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. The main feature of neuroinflammation is associated with the activation of microglia. The activated microglia increase proinflammatory cytokine production and induce progressive neuronal cell death. Citrus flavonoids show neuroprotective effects that are associated with the anti-inflammatory action of flavonoids in neurodegenerative diseases. Among these citrus flavonoids, kaempferol, naringin, and nobiletin show inhibitory effects on nuclear factor-κB and mitogen-activated protein kinase signaling pathways that can modulate inflammatory conditions in microglial cells. In the present review, we present the anti-inflammatory activities of citrus flavonoids and therapeutic potential of flavonoids as neuroprotective agents.

Synthetic 3',4'-Dihydroxyflavone Exerts Anti-Neuroinflammatory Effects in BV2 Microglia and a Mouse Model

  • Kim, Namkwon;Yoo, Hyung-Seok;Ju, Yeon-Joo;Oh, Myung Sook;Lee, Kyung-Tae;Inn, Kyung-Soo;Kim, Nam-Jung;Lee, Jong Kil
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.210-217
    • /
    • 2018
  • Neuroinflammation is an immune response within the central nervous system against various proinflammatory stimuli. Abnormal activation of this response contributes to neurodegenerative diseases such as Parkinson disease, Alzheimer's disease, and Huntington disease. Therefore, pharmacologic modulation of abnormal neuroinflammation is thought to be a promising approach to amelioration of neurodegenerative diseases. In this study, we evaluated the synthetic flavone derivative 3',4'-dihydroxyflavone, investigating its anti-neuroinflammatory activity in BV2 microglial cells and in a mouse model. In BV2 microglial cells, 3',4'-dihydroxyflavone successfully inhibited production of chemokines such as nitric oxide and prostaglandin $E_2$ and proinflammatory cytokines such as tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 in BV2 microglia. It also inhibited phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor $(NF)-{\kappa}B$ activation. This indicates that the anti-inflammatory activities of 3',4'-dihydroxyflavone might be related to suppression of the proinflammatory MAPK and $NF-{\kappa}B$ signaling pathways. Similar anti-neuroinflammatory activities of the compound were observed in the mouse model. These findings suggest that 3',4'-dihydroxyflavone is a potential drug candidate for the treatment of microglia-related neuroinflammatory diseases.

Sinapic Acid Attenuates the Neuroinflammatory Response by Targeting AKT and MAPK in LPS-Activated Microglial Models

  • Tianqi Huang;Dong Zhao;Sangbin Lee;Gyochang Keum;Hyun Ok Yang
    • Biomolecules & Therapeutics
    • /
    • 제31권3호
    • /
    • pp.276-284
    • /
    • 2023
  • Sinapic acid (SA) is a phenolic acid that is widely distributed in fruits and vegetables, which has various bioactivities, such as antidiabetic, anticancer and anti-inflammatory functions. Over-activated microglial is involved in the development progress of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. The objective of this study was to investigate the effect of SA in microglia neuroinflammation models. Our results demonstrated that SA inhibited secretion of the nitric oxide (NO) and interleukin (IL)-6, reduced the expression of inducible nitric oxide synthase (iNOS) and enhanced the release of IL-10 in a dose-dependent manner. Besides, our further investigation revealed that SA attenuated the phosphorylation of AKT and MAPK cascades in LPS-induced microglia. Consistently, oral administration of SA in mouse regulated the production of inflammation-related cytokines and also suppressed the phosphorylation of MAPK cascades and AKT in the mouse cerebral cortex. These results suggested that SA may be a possible therapy candidate for anti-inflammatory activity by targeting the AKT/MAPK signaling pathway.