Browse > Article
http://dx.doi.org/10.4062/biomolther.2018.008

Synthetic 3',4'-Dihydroxyflavone Exerts Anti-Neuroinflammatory Effects in BV2 Microglia and a Mouse Model  

Kim, Namkwon (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University)
Yoo, Hyung-Seok (Department of Pharmacy, College of Pharmacy, Kyung Hee University)
Ju, Yeon-Joo (Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University)
Oh, Myung Sook (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University)
Lee, Kyung-Tae (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University)
Inn, Kyung-Soo (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University)
Kim, Nam-Jung (Department of Pharmacy, College of Pharmacy, Kyung Hee University)
Lee, Jong Kil (Department of Pharmacy, College of Pharmacy, Kyung Hee University)
Publication Information
Biomolecules & Therapeutics / v.26, no.2, 2018 , pp. 210-217 More about this Journal
Abstract
Neuroinflammation is an immune response within the central nervous system against various proinflammatory stimuli. Abnormal activation of this response contributes to neurodegenerative diseases such as Parkinson disease, Alzheimer's disease, and Huntington disease. Therefore, pharmacologic modulation of abnormal neuroinflammation is thought to be a promising approach to amelioration of neurodegenerative diseases. In this study, we evaluated the synthetic flavone derivative 3',4'-dihydroxyflavone, investigating its anti-neuroinflammatory activity in BV2 microglial cells and in a mouse model. In BV2 microglial cells, 3',4'-dihydroxyflavone successfully inhibited production of chemokines such as nitric oxide and prostaglandin $E_2$ and proinflammatory cytokines such as tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 in BV2 microglia. It also inhibited phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor $(NF)-{\kappa}B$ activation. This indicates that the anti-inflammatory activities of 3',4'-dihydroxyflavone might be related to suppression of the proinflammatory MAPK and $NF-{\kappa}B$ signaling pathways. Similar anti-neuroinflammatory activities of the compound were observed in the mouse model. These findings suggest that 3',4'-dihydroxyflavone is a potential drug candidate for the treatment of microglia-related neuroinflammatory diseases.
Keywords
Microglia; Neuroinflammation; Lipopolysaccharide; BV2 microglia; Flavone;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cherry, J. D., Olschowka, J. A. and O'Banion, M. K. (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation 11, 98.   DOI
2 Chinta, S. J., Ganesan, A., Reis-Rodrigues, P., Lithgow, G. J. and Andersen, J. K. (2013) Anti-inflammatory role of the isoflavone diadzein in lipopolysaccharide-stimulated microglia: implications for Parkinson's disease. Neurotox. Res. 23, 145-153.   DOI
3 Choi, Y., Lee, M. K., Lim, S. Y., Sung, S. H. and Kim, Y. C. (2009) Inhibition of inducible NO synthase, cyclooxygenase-2 and interleukin-1beta by torilin is mediated by mitogen-activated protein kinases in microglial BV2 cells. Br. J. Pharmacol. 156, 933-940.   DOI
4 Cunningham, C. (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61, 71-90.   DOI
5 de Haas, A. H., Boddeke, H. W. and Biber, K. (2008) Region-specific expression of immunoregulatory proteins on microglia in the healthy CNS. Glia 56, 888-894.   DOI
6 Kim, D. C., Quang, T. H., Oh, H. and Kim, Y. C. (2017) Steppogenin isolated from cudrania tricuspidata shows antineuroinflammatory effects via NF-${\kappa}B$ and MAPK pathways in lps-stimulated bv2 and primary rat microglial cells. Molecules 22, E2130.   DOI
7 Kim, E. K. and Choi, E. J. (2015) Compromised MAPK signaling in human diseases: an update. Arch. Toxicol. 89, 867-882.   DOI
8 Kim, S. H., Smith, C. J. and Van Eldik, L. J. (2004) Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol. Aging 25, 431-439.   DOI
9 Kim, Y. S., Choi, D. H., Block, M. L., Lorenzl, S., Yang, L., Kim, Y. J., Sugama, S., Cho, B. P., Hwang, O., Browne, S. E., Kim, S. Y., Hong, J. S., Beal, M. F. and Joh, T. H. (2007) A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J. 21, 179-187.   DOI
10 An, J. Y., Lee, H. H., Shin, J. S., Yoo, H. S., Park, J. S., Son, S. H., Kim, S. W., Yu, J., Lee, J., Lee, K. T. and Kim, N. J. (2017) Identification and structure activity relationship of novel flavone derivatives that inhibit the production of nitric oxide and PGE2 in LPS-induced RAW 264.7 cells. Bioorg. Med. Chem. Lett. 27, 2613-2616.   DOI
11 Bachstetter, A. D. and Van Eldik, L. J. (2010) The p38 MAP kinase family as regulators of proinflammatory cytokine production in degenerative diseases of the CNS. Aging Dis. 1, 199-211.
12 Biber, K., Moller, T., Boddeke, E. and Prinz, M. (2016) Central nervous system myeloid cells as drug targets: current status and translational challenges. Nat. Rev. Drug Discov. 15, 110-124.   DOI
13 Block, M. L. and Hong, J. S. (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76, 77-98.   DOI
14 Block, M. L., Zecca, L. and Hong, J. S. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57-69.   DOI
15 Bodea, L. G., Wang, Y., Linnartz-Gerlach, B., Kopatz, J., Sinkkonen, L., Musgrove, R., Kaoma, T., Muller, A., Vallar, L., Di Monte, D. A., Balling, R. and Neumann, H. (2014) Neurodegeneration by activation of the microglial complement-phagosome pathway. J. Neurosci. 34, 8546-8556.   DOI
16 Boje, K. M. (2004) Nitric oxide neurotoxicity in neurodegenerative diseases. Front. Biosci. 9, 763-776.   DOI
17 Perez-Cano, F. J. and Castell, M. (2016) Flavonoids, inflammation and immune system. Nutrients 8, 659.   DOI
18 Lee, J. K., Jin, H. K. and Bae, J. S. (2010) Bone marrow-derived mesenchymal stem cells attenuate amyloid beta-induced memory impairment and apoptosis by inhibiting neuronal cell death. Curr. Alzheimer Res. 7, 540-548.
19 Lichtenstein, M. P., Carriba, P., Baltrons, M. A., Wojciak-Stothard, B., Peterson, J. R., Garcia, A. and Galea, E. (2010) Secretase-independent and RhoGTPase/PAK/ERK-dependent regulation of cytoskeleton dynamics in astrocytes by NSAIDs and derivatives. J. Alzheimers Dis. 22, 1135-1155.
20 Liu, S. Y., Xu, P., Luo, X. L., Hu, J. F. and Liu, X. H. (2016) (7R,8S)-Dehydrodiconiferyl alcohol suppresses lipopolysaccharide-induced inflammatory responses in BV2 microglia by inhibiting mapk signaling. Neurochem. Res. 41, 1570-1577.   DOI
21 Polak, P. E., Lin, S. X., Pelligrino, D. and Feinstein, D. L. (2014) The blood-brain barrier-permeable catechol-O-methyltransferase inhibitor dinitrocatechol suppresses experimental autoimmune encephalomyelitis. J. Neuroimmunol. 276, 135-141.   DOI
22 Ransohoff, R. M. and Brown, M. A. (2012) Innate immunity in the central nervous system. J. Clin. Invest. 122, 1164-1171.   DOI
23 Tai, Y., Qiu, Y. and Bao, Z. (2017) Magnesium lithospermate B suppresses lipopolysaccharide-induced neuroinflammation in BV2 microglial cells and attenuates neurodegeneration in lipopolysaccharide-injected mice. J. Mol. Neurosci. 64, 80-92.
24 Zeinali, M., Rezaee, S. A. and Hosseinzadeh, H. (2017) An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed. Pharmacother. 92, 998-1009.   DOI
25 Zhang, F. X. and Xu, R. S. (2017) Juglanin ameliorates LPS-induced neuroinflammation in animal models of Parkinson's disease and cell culture via inactivating TLR4/NF-kappaB pathway. Biomed. Pharmacother. 97, 1011-1019.