Browse > Article
http://dx.doi.org/10.4062/biomolther.2021.077

Botulinum Toxin A Ameliorates Neuroinflammation in the MPTP and 6-OHDA-Induced Parkinson's Disease Models  

Ham, Hyeon Joo (College of Pharmacy and Medical Research Center, Chungbuk National University)
Yeo, In Jun (College of Pharmacy and Medical Research Center, Chungbuk National University)
Jeon, Seong Hee (College of Pharmacy and Medical Research Center, Chungbuk National University)
Lim, Jun Hyung (College of Pharmacy and Medical Research Center, Chungbuk National University)
Yoo, Sung Sik (College of Pharmacy and Medical Research Center, Chungbuk National University)
Son, Dong Ju (College of Pharmacy and Medical Research Center, Chungbuk National University)
Jang, Sung-Su (ATGC Co.)
Lee, Haksup (ATGC Co.)
Shin, Seung-Jin (ATGC Co.)
Han, Sang Bae (College of Pharmacy and Medical Research Center, Chungbuk National University)
Yun, Jae Suk (College of Pharmacy and Medical Research Center, Chungbuk National University)
Hong, Jin Tae (College of Pharmacy and Medical Research Center, Chungbuk National University)
Publication Information
Biomolecules & Therapeutics / v.30, no.1, 2022 , pp. 90-97 More about this Journal
Abstract
Recently, increasing evidence suggests that neuroinflammation may be a critical factor in the development of Parkinson's disease (PD) in addition to the ratio of acetylcholine/dopamine because dopaminergic neurons are particularly vulnerable to inflammatory attack. In this study, we investigated whether botulinum neurotoxin A (BoNT-A) was effective for the treatment of PD through its anti-neuroinflammatory effects and the modulation of acetylcholine and dopamine release. We found that BoNT-A ameliorated MPTP and 6-OHDA-induced PD progression, reduced acetylcholine release, levels of IL-1β, IL-6 and TNF-α as well as GFAP expression, but enhanced dopamine release and tyrosine hydroxylase expression. These results indicated that BoNT-A had beneficial effects on MPTP or 6-OHDA-induced PD-like behavior impairments via its anti-neuroinflammation properties, recovering dopamine, and reducing acetylcholine release.
Keywords
Parkinson's disease; Botulinum toxin A; Anti-neuroinflammation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wree, A., Mix, E., Hawlitschka, A., Antipova, V., Witt, M., Schmitt, O. and Benecke, R. (2011) Intrastriatal botulinum toxin abolishes pathologic rotational behaviour and induces axonal varicosities in the 6-OHDA rat model of Parkinson's disease. Neurobiol. Dis. 41, 291-298.   DOI
2 Zhang, Z., Hao, L., Shi, M., Yu, Z., Shao, S., Yuan, Y., Zhang, Z. and Holscher, C. (2021b) Neuroprotective effects of a GLP-2 analogue in the MPTP Parkinson's disease mouse model. J. Parkinsons Dis. 11, 529-543.   DOI
3 Zhao, Y. F., Tang, Y. and Illes, P. (2021) Astrocytic and oligodendrocytic P2X7 receptors determine neuronal functions in the CNS. Front. Mol. Neurosci. 14, 641570.   DOI
4 Pott Godoy, M. C., Tarelli, R., Ferrari, C. C., Sarchi, M. I. and Pitossi, F. J. (2008) Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson's disease. Brain 131, 1880-1894.   DOI
5 Choi, D. Y., Lee, M. K. and Hong, J. T. (2013) Lack of CCR5 modifies glial phenotypes and population of the nigral dopaminergic neurons, but not MPTP-induced dopaminergic neurodegeneration. Neurobiol. Dis. 49, 159-168.   DOI
6 Connolly, B. S. and Lang, A. E. (2014) Pharmacological treatment of Parkinson disease: a review. JAMA 311, 1670-1683.   DOI
7 Antipova, V., Hawlitschka, A., Mix, E., Schmitt, O., Drager, D., Benecke, R. and Wree, A. (2013) Behavioral and structural effects of unilateral intrastriatal injections of botulinum neurotoxin a in the rat model of Parkinson's disease. J. Neurosci. Res. 91, 838-847.   DOI
8 Boll, M. C., Alcaraz-Zubeldia, M. and Rios, C. (2011) Medical management of Parkinson's disease: focus on neuroprotection. Curr. Neuropharmacol. 9, 350-359.   DOI
9 Butler, C. A., Popescu, A., Kitchener, E., Allendorf, D. H., Puigdellivol, M. and Brown, G. C. (2021) Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J. Neurochem. doi: 10.1111/jnc.15327 [Online ahead of print].   DOI
10 Chaudhuri, K. R., Healy, D. G. and Schapira, A. H. (2006) Non-motor symptoms of Parkinson's disease: diagnosis and management. Lancet Neurol. 5, 235-245.   DOI
11 Coffield, J. A. and Yan, X. (2009) Neuritogenic actions of botulinum neurotoxin A on cultured motor neurons. J. Pharmacol. Exp. Ther. 330, 352-358.   DOI
12 Day, M., Wang, Z., Ding, J., An, X., Ingham, C. A., Shering, A. F., Wokosin, D., Ilijic, E., Sun, Z. and Sampson, A. R. (2006) Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat. Neurosci. 9, 251-259.   DOI
13 Hawlitschka, A., Antipova, V., Schmitt, O., Witt, M., Benecke, R., Mix, E. and Wree, A. (2013) Intracerebrally applied botulinum neurotoxin in experimental neuroscience. Curr. Pharm. Biotechnol. 14, 124-130.   DOI
14 Hwang, C. J., Kim, Y. E., Son, D. J., Park, M. H., Choi, D. Y., Park, P. H., Hellstrom, M., Han, S. B., Oh, K. W., Park, E. K. and Hong, J. T. (2017) Parkin deficiency exacerbate ethanol-induced dopaminergic neurodegeneration by P38 pathway dependent inhibition of autophagy and mitochondrial function. Redox. Biol. 11, 456-468.   DOI
15 Oldenburg, I. A. and Ding, J. B. (2011) Cholinergic modulation of synaptic integration and dendritic excitability in the striatum. Curr. Opin. Neurobiol. 21, 425-432.   DOI
16 Jankovic, J. (2004) Botulinum toxin in clinical practice. J. Neurol. Neurosurg. Psychiatry 75, 951-957.   DOI
17 Liu, M. and Bing, G. (2011) Lipopolysaccharide animal models for Parkinson's disease. Parkinsons Dis. 2011, 327089.
18 Knuepfer, S. and Juenemann, K. P. (2014) Experience with botulinum toxin type A in the treatment of neurogenic detrusor overactivity in clinical practice. Ther. Adv. Urol. 6, 34-42.   DOI
19 Marsden, C. (1982) The mysterious motor function of the basal ganglia: the Robert Wartenberg Lecture. Neurology 32, 514-539.   DOI
20 Mogi, M., Harada, M., Kondo, T., Riederer, P., Inagaki, H., Minami, M. and Nagatsu, T. (1994) Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci. Lett. 180, 147-150.   DOI
21 Paxinos, G. and Watson, C. (2006) The Rat Brain in Stereotaxic Coordinates. Hard cover ed. Elsevier.
22 Pringsheim, T., Jette, N., Frolkis, A. and Steeves, T. D. (2014) The prevalence of Parkinson's disease: a systematic review and metaanalysis. Mov. Disord. 29, 1583-1590.   DOI
23 Rossetto, O., Megighian, A., Scorzeto, M. and Montecucco, C. (2013) Botulinum neurotoxins. Toxicon 67, 31-36.   DOI
24 Sahinkanat, T., Ozkan, K. U., Ciralik, H., Ozturk, S. and Resim, S. (2009) Botulinum toxin-A to improve urethral wound healing: an experimental study in a rat model. Urology 73, 405-409.   DOI
25 Wang, L., Wang, K., Chu, X., Li, T., Shen, N., Fan, C., Niu, Z., Zhang, X. and Hu, L. (2017) Intra-articular injection of Botulinum toxin A reduces neurogenic inflammation in CFA-induced arthritic rat model. Toxicon 126, 70-78.   DOI
26 Rojewska, E., Piotrowska, A., Popiolek-Barczyk, K. and Mika, J. (2018) Botulinum toxin type A-a modulator of spinal neuron-glia interactions under neuropathic pain conditions. Toxins 10, 145.   DOI
27 Ding, J., Guzman, J. N., Tkatch, T., Chen, S., Goldberg, J. A., Ebert, P. J., Levitt, P., Wilson, C. J., Hamm, H. E. and Surmeier, D. J. (2006) RGS4-dependent attenuation of M 4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nat. Neurosci. 9, 832-842.   DOI
28 Bonte, M.-A., El Idrissi, F., Gressier, B., Devos, D. and Belarbi, K. (2021) Protein network exploration prioritizes targets for modulating neuroinflammation in Parkinson's disease. Int. Immunopharmacol. 95, 107526.   DOI
29 Munoz-Lora, V. R. M., Abdalla, H. B., Cury, A. A. D. B. and Clemente-Napimoga, J. T. (2020) Modulatory effect of botulinum toxin type A on the microglial P2X7/CatS/FKN activated-pathway in antigeninduced arthritis of the temporomandibular joint of rats. Toxicon 187, 116-121.   DOI
30 Piotrowska, A., Popiolek-Barczyk, K., Pavone, F. and Mika, J. (2017) Comparison of the expression changes after botulinum toxin type A and minocycline administration in lipopolysaccharide-stimulated rat microglial and astroglial cultures. Front. Cell. Infect. Microbiol. 7, 141.   DOI
31 Stubblefield, M. D., Levine, A., Custodio, C. M. and Fitzpatrick, T. (2008) The role of botulinum toxin type A in the radiation fibrosis syndrome: a preliminary report. Arch. Phys. Med. Rehabil. 89, 417-421.   DOI
32 Zhang, L. Y., Jin, Q. Q., Holscher, C. and Li, L. (2021a) Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat Parkinson model. Neural Regen. Res. 16, 1660-1670.   DOI