
IntroductionIntroduction

Inflammation of neuronal cell is regarded as a physiologi-

cal defensive response to protect central nerve system (CNS) 

against tissue injury and infection [1]. Therefore, inflammation 

shows beneficial effects that infectious insults and tissue in-

jury have been eliminated and homeostasis has been restored 

[2]. This inflammation is also associated with various neurode-

generative diseases such as Alzheimer’s disease (AD), Parkin-

son’s disease (PD), multiple sclerosis (MS), amyotrophic lateral 

sclerosis (ALS) and other neuronal pathologies [3,4]. Although 

the main cellular or molecular mechanism of neurodegenera-

tive diseases are linked with many factors including oxidative 

stress, inflammation, protein aggregation, there are many evi-

dences in vitro and in vivo studies shows that inflammatory re-

sponse of astrocytes and microglia affects neurodegenerative 

disease progression [2]. 

Oxidative stress is also known as one of major contributor in 

neurodegenerative condition. Comparing with other cells, neu-

ronal cells have higher level of metabolic activities and oxygen 

consumption. Therefore, neuronal cells are more vulnerable to 

oxidative stress, particularly neuronal cells in aging brains [5-7]. 

Oxidative stress leads to activate the mitogen-activated pro-

tein kinases (MAPKs) by phosphorylation [8]. MAPKs activation 

is implicated with triggering transcription of various apoptosis 

genes [9]. Neuronal cell damage caused by inflammatory cyto-
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kines and oxidative stress occurs by c-Jun N-terminal kinase 

(JNK) and p38 signal pathway activation. In particular, extracel-

lular signal regulated kinase (ERK) signal pathway is more im-

plicated to neuronal cell death under oxidative stress condition 

[10,11]. 

Flavonoids are considered as potential neuroprotective com-

pounds which can modulate cellular mechanisms implicated 

with neurodegeneration. Flavonoids, a group of natural com-

pounds with various polyphenol structures, are found in fruits, 

vegetable, grains, bark, tea, and wine [12,13]. Flavonoids show 

characteristics of both antioxidant and signal pathway modu-

lator. It can modulate cellular signal cascades by interacting 

with enzymes or receptors that are involved in activation and 

deactivation of signaling pathways [14]. Flavonoids exhibit 

neuroprotective effects by modulating intracellular signal which 

is associated with neuronal cell survival, death, and mitochon-

drial interaction [15,16]. Recent reports suggest that a habitual 

intake of dietary flavonoids can reduce the risk of dementia, 

stroke, and PD [17-19]. For instance, flavonoids in fruits, veg-

etables, grains, and etc. seems to enable to prevent or reverse 

cognitive related deficits [20-22]. 

In the current review, we focus on neuroprotective effects of 

flavonoids against inflammatory and oxidative damage in neu-

ronal cells.

Flavonoids and Anti-neuroinflammation Flavonoids and Anti-neuroinflammation 

1. Flavonoids and major structures 

Health benefit of citrus flavonoids has been known for many 

years. Several studies have shown that citrus flavonoids are 

associate with lower risk of colorectal [23], esophageal [24], 

stomach cancer [25] and stroke [26], and improved survival of 

elderly people [27]. 

Flavonoids have a general structure with 15 carbon skeleton 

with two phenyl rings (A and B) and a heterocyclic ring (C). 

Considering the oxidation of heterocyclic ring (C), flavonoids 

can be categorized into several classes. Based on the struc-

ture, flavonoids divided into following subclasses: flavones, 

flavanones, isoflavones, flavan-3-ols, anthocyanidins, flavanols 

(Fig. 1)[28]. In addition, flavonoids also include anthocyanines, 

and proanthocyanidines [29,30]. The main sources of flavo-

noids are parsley, onions, blueberry, berries, black tea, green 

tea, bananas, and etc. Flavonoid contents are high in apple, 

cauliflower, carrot, tomato, soybeans, and citrus fruits. These 

fruits contain various flavonoids [31,32]. In particular, the 

chemical composition of citrus flavonoids has been extensively 

studied by high-performance liquid chromatograph-mass 

spectrometry, gas chromatography-mass spectrometry and 

gas chromatography-flame ionization detector. For example, 
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citrus fruits notably contain high level of flavonoids including 

three major flavonoids; flavanone (mainly di- and tri-O-gly-

cosides), flavone glycosides (mainly di-, tri-O-glycoside, and 

C-glycoside), and polymethoxyflavones [15]. The O-glycoside 

citrus flavonoids are mainly rutinosides and neohesperidosides. 

Rutinosides include hesperidin, narirutin, eriocitrin, isorhoifolin, 

and diosmin. Neohesperidoses are including naringin, neoeric-

itrin, neodiosmin, and neohesperidin (Fig. 2). In the flavone 

aglycan, disometin and luteolin are abundant in citrus plants 

and fruits such as lemon, orange, broccoli, pepper, and celery 

[15].  

2. Anti-neuroinflammatory effects of citrus flavonoids 

1) 7-rutinosides 

7-rutinosides possess flavone backbone with 7-position of 

rutinose. These 7-rutinosides include hesperidin, narirutin, 

eriocitrin, isorhoifolin, and diosmin which are abundantly pre-
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sented in oranges, tangerines, and lemons. Recent literatures 

show that 7-rutinosides exerts neuroprotective effects or 

improving cognitive function by reducing neuroinflammation. 

Among these 7-rutinosides, hesperidin reduces neuroinflam-

mation in the mouse model of MS. Hesperidin increases anti-

inflammatory cytokines (interleukin [IL]-10 and transforming 

growth factor-β) and reduces auto-reactive T cells proliferation 

and its infiltration into CNS [33]. Diosmin reduces neuroin-

flammation, Aβ levels, tau phosphorylation, and cognitive im-

pairment in mouse model via inhibition of glycogen synthase 

kinase-3 proteins. Also, diosmin inhibits microglial proinflam-

matory activation and enhances Aβ phagocytosis [34]. 

2) 7-neohesperidosides 

7-neohesperidosides include naringin, neoeriocitrin, neodi-

osmin, and neohesperidin which have bitter taste and mainly 

found in grapefruit. Recent study shows that naringin has neu-

roprotective effect and attenuate neuroinflammation in quinic 

acid induced neurotoxic in vivo model. In these studies, narin-

gin reduces anti-inflammatory markers (tumor necrosis factor-

a [TNF-a], IL’s and nuclear factor-κB [NF-κB]) expression 

and apoptotic markers (bax-bcl2, caspase-3, and peroxisome 

proliferator-activated receptor gamma) expression [35].  

3) 7-hydoroxy citrus flavonoids 

7-hydroxy compounds include diosmetin, luteolin, isorh-

amnetin, limocitrin, kaempferol, and limocitrol. In recent re-

port of rat pneumococcal meningitis model study, diosmetin 

prevents the neuroinflammation and apoptotic cell death by 

controlling phosphoinositide 3-kinase (PI3K)/protein kinase 

B (AKT)/NF-κB signal pathway [36]. Neuroinflammatory ef-

fects of luteolin have been extensively studied. Johnson and 

his coworkers reported that luteolin inhibits the LPS stimulated 

production of cytokine IL-6 by blocking the activator protein-1 

binding with IL-6 promoter in microglia cells and mouse model 

[37]. Lutieolin improves cognitive function by inhibiting neuro-

inflammation [38]. In addition, cotreatment of luteolin and pal-

mitoylethanolamide decrease neuroinflammation in Parkinson 

disease animal model [39]. Kaempferol decreases lipopoly-

saccharide (LPS) induced neuroinflammation by inhibiting of 

NF-κB, MAPKs and AKT signaling in BV2 microglial cells [40]. 

Further research also show that kaempferol shows beneficial 

effects to dementia, ischemic brain injury, and PD by blocking 

proinflammatory signal cascade [41-43].   

4) 7-methoxy citrus flavonoids 

7-methoxy compounds include tangeretin, nobiletin, natsu-

daidain, 3,5,6,7,8,3’,4’-heptamethoxyflavone (HMF). Tangere-

tin decreases the production of nitric oxide (NO), prostaglandin 

E2, TNF-a, IL-1β, and IL-6 in primary rat microglia and BV2 

microglial cell culture models. Further study of tangeretin 

shows that it exhibits anti-neuroinflammtory effect via the 

modulation of MAPK signal pathway and the nuclear transloca-

tion of p65 [44]. Nobiletin, known as anti-obesity, anti-allergic, 

and antitumor agent, shows improvement of LPS-triggered 

memory deficit. Nobiletin suppresses the microglial activation 

and the production of proinflammatory cytokines (cyclooxygen-

ase2 [COX2], IL-1β, TNF-a, and inducible nitric oxide synthase 

[iNOS]) via modulation of MAPKs, PI3K/AKT/NF-κB signaling 

pathways in BV2 cells [45]. HMF inhibits proinflammatory fac-

tors including IL-1β, COX2, TNF-a, and iNOS in microglia acti-

vation [46]. 

3. Citrus flavonoids and oxidative stress

Oxidative stress is the disruption of equilibrium between 

production of reactive oxygen species (ROS) and antioxidant 

defense in cellular system [47]. Neuronal cells require high 

level of metabolic activities and oxygen concentration to gen-

erate electrical and chemical signals that travel between neu-

rons. These characteristics of neuronal cells can easily give rise 

to oxidative stress which can damage to neuronal tissue [5,48]. 

Therefore, neuronal cells are more susceptible to oxidative 

stress. Recent studies reveal that ROS is crucial in the pro-

gression of many neurodegenerative diseases such as AD, PD, 

Huntington disease (HD), and ALS [49]. ROS generation acti-

vates JNK and p38, and deactivates protein phosphatase 2A in 

AD. The activation of JNK and p38 is known for the increasing 

expression of Tau protein, which results in aggregation and in-

duction of neuronal cell death [50]. ROS also induces genera-

tion of misfolded proteins in PD, HD, and ALS [51-53]. 

Citrus flavonoids seem to show various bioactivities including 

reduction of oxidative stress [54]. Antioxidant effects of fla-

vonoids may be attributed by their scavenging effects of oxy-

gen free radical [55,56]. The scavenging effects of flavonoids 

depend on the hydrogen donation of polyphenol structure in 

flavonoids [57]. Flavonoids have potentials to enhance the 

generation of antioxidant enzymes and inhibit harmful oxidases 

and also have metal chelating activities. These functions of 

flavonoids show reduction of oxidative stress in neuronal cells. 

The citrus flavonoids have strong free radical scavenging 
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activities than other dietary flavonoids. The studies reveal that 

flavonoids such as kaempfeol, luteolin, rutin, scutellarein, and 

neoeriocitrin are having strong antioxidant and lipid peroxida-

tion activities than the hesperidin, hesperetin, neohesperidin, 

naringenin, and naringin. Recently, Hwang et al. [15] reported 

that flavonoids including hesperetin, isorhamnetin, and iso-

sakuranetin show scavenging effects to ROS, activate AKT 

signal pathway, and inactivate JNK signal pathway that is im-

plicated with apoptosis. Furthermore, these flavonoids differ-

entially modulate p38 activity that is related with cell survival. 

Therefore, the treatment of citrus flavonoids could be a prom-

ising approach for neuroprotection against oxidative damage.  

Molecular Mechanisms Underlying the Molecular Mechanisms Underlying the 
Anti-neuroinflammatory Effects of Anti-neuroinflammatory Effects of 
Flavonoids Flavonoids 

Neuroinflammation is initiated by inflammatory cytokine, 

COX2 and iNOS expression in active microglia. Inflammatory 

cytokine production and inflammatory response enzymes such 

as COX2 and iNOS are regulated by MAPK and NF-κB signal-

ing pathway. MAPK includes ERK1/2, (JNK1/2/3) and p38 

kinase (p38 aβgd). In particular, MAPK signal pathway has a 

pivotal role for signal cascades from extracellular stimulation 

into intracellular response. Under the stimulation, these kinas-

es are activated by phosphorylation and the activated kinases 

phosphorylate both cytosolic and nuclear specific proteins. 

As result, transcription factors including signal transducer and 

activator of transcription-1/2/3, NF-κB, are activated. Many 

activated glia cells show increased proinflammatory cytokine 

secretion such as iNOS, COX2, IL-1β and TNF-a expression 

via NF-κB and MAPK activation [58-60]. 

Many literatures reveal that NF-κB activation is associated 

with oxidative stress [61] and inflammatory condition [62]. 

NF-κB signal and its modulators are regarded as good thera-

peutic targets for modulating inflammatory diseases [63,64]. 

In neuroinflammatory condition, NF-κB activation is associated 

with excessive ROS generation in activated microglia. As a re-

sult, activated microglia increases production of proinflamma-

tory cytokines (Fig. 3) [45]. Therefore, activated microglia with 

over-producing proinflammatory cytokines are regarded as risk 

factors to induce neurodegeneration via activation of MAPK 

and PI3K/AKT pathway [65]. 

In microglia activation, NF-κB activation is mediated to pro-

duction of iNOS production which results in high production 

of NO and cytokine. NF-κB activation also is implicated with 

expression of COX2 which results in prostaglandin formation in 

activated astrocyte (Fig. 4) [1,66]. These activated astrocyte or 

glia induces production of proinflammatory cytokines (IL-1β, 

TNF-a), glutamate, NO, ROS and etc. These molecules such 

as TNF-a may directly trigger neuronal cell death by binding 

with various TNF receptor families by inducing apoptosis. NO 
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Fig. 3. Mitogen-activated protein kinase 
(MAPK) signal pathway of neuroinflammation. 
Cytokines trigger proinflammatory transcrip-
tion factors (nuclear factor-κB [NF-κB] and 
signal transducer and activator of transcrip-
tion-1 [STAT-1]) activation and increase 
inducible nitric oxide synthase (iNOS), cyclo-
oxygenase2 (COX2), tumor necrosis factor-a 
(TNF-a), and interleukin (IL)-1β expression 
through MAPK signal pathway activation. The 
figure was modified by Qi et al. (J Agric Food 
Chem 2019;67:5122-34) [45].
ERK, extracellular signal regulated kinase; 
JNK, c-Jun N-terminal kinase; AP-1, activator 
protein-1.
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overproduction mediates release of cytochrome c from mito-

chondria through activation of BCL2-associated X protein (BAX) 

and BCL2-homologous antagonist killer (BAK1) leading to cell 

death. 

ConclusionsConclusions

Neuroinflammation is an important mechanism in the prog-

ress and advancement of neurodegenerative diseases such as 

AD, PD, MS, HD, and ALS. Neuroinflammation is mainly asso-

ciated with glia cell activation, which can cause proinflamma-

tory cytokine over-production and induce neuronal cell death. 

The in vitro and in vivo studies indicate that flavonoids can 

reduce neuroinflammation by inhibiting the NF-κB and MAPK 

signal pathways in microglia cells.

Flavonoids possess strong antioxidant and anti-inflammatory 

potentials. Therefore flavonoids contribute to neuroprotective 

effects against neuronal damage by neuroinflammation. Sev-

eral flavonoids have known for therapeutic potentials including 

blood brain barrier penetration, and multiple neuroprotective 

effects [67,68]. However, bioavailability of flavonoids is still 

one of main hurdle in their development as drug candidates 

[69,70]. Recently, formulation technology can help to observe 

less bioavailable flavonoids to human body. 

In summary, flavonoids are suitable candidate for the devel-

opment of health benefit products for anti-neuroinflammation 

and neuroprotection.
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