• 제목/요약/키워드: anti-inflammatory$NF-kB$

검색결과 650건 처리시간 0.026초

Toll-like receptor 2, 3, 4의 신호전달체계 조절을 통한 curcumin의 항암${\cdot}$항염증 효과 (Anti-cancer and Anti-inflammatory Effects of Curcumin by the Modulation of Toll-like Receptor 2, 3 and 4)

  • 강순아;;윤형선
    • 한국식품과학회지
    • /
    • 제39권2호
    • /
    • pp.175-180
    • /
    • 2007
  • TLRs는 병원균이 숙주의 몸 속에 들어 왔을 때, 병원균들이 가지고 있는 독특한 구조를 인식하여 선천성 면역반응과 뒤이어 후천성 면역반응을 유도하는 중요한 역할을 한다. 우리는 이번 실험을 통하여 curcumin이 선행연구에서 밝혀낸 TLR4 뿐만 아니라 TLR2와 TLR6 그리고 TLR3를 또한 분자학적인 타깃으로 할 수 있다는 것을 알아내었다. Curcumin이 MALP-2(TLR2,6 agonist)에 의해서 유도된 IRAK-1 degradation을 억제시켰다. 이러한 결과는 curcumin의 분자학적인 타깃이 IRAK-1위에 놓여 있으며, TLR2와 TLR6가 될 것이라는 가능성을 제시해 준다고 할 수 있다. 또한 curcumin은 viral 자극제인 poly[I:C](TLR3 agonist)에 의해서 유도된 IRF3나 $NF-{\kappa}B$ 활성화를 억제하였지만, TRIF에 의해서 유도된 IRF3 활성화는 억제시키지를 못하였다. 이러한 결과 또한 TLR3 자체가 curcumin의 분자학적인 타깃이라는 가능성을 제시해 준다고 할 수 있겠다. 이러한 결과를 종합해 볼때, curcumin의 분자학적인 타깃이 $IKK{\beta}$ 이외에 모든 TLRs가 될 수 있다는 가능성을 제시해 준다고 할 수 있겠다. 이러한 결과는 curcumin이 그람음성균 뿐만이 아니라 바이러스나 박테리아 등 여러 병원균들로부터 유도되는 염증반응이나 만성적인 질병들을 조절할 수 있다는 것을 보여주는 결과라 할 수 있겠다.

정향(丁香) 추출물이 골관절염 흰쥐에 미치는 효과 및 기전 연구 (Study of the Effect and Underlying Mechanism of Clove Extract on Monosodium Iodoacetate-Induced Osteoarthritis in Rats)

  • 이진아;김민주;서성욱;신미래
    • 대한한방내과학회지
    • /
    • 제43권6호
    • /
    • pp.1089-1104
    • /
    • 2022
  • Objective: The aim of this study was to identify the efficacy and underlying mechanism of cloves as an osteoarthritis (OA) treatment in a monosodium iodoacetate (MIA)-induced rat OA model. Osteoarthritis (OA) is nowadays one of the most prevalent degenerative joint diseases. Methods: Sprague-Dawley rats treated with MIA (50 μL; 80 mg/mL) were used as in vivo OA models. Cloves (100 and 200 mg/kg b.w.) were administered orally once daily for 2 weeks from 7 days after MIA injection. Changes in hindpaw weight distribution (HWD) were measured as a joint discomfort index. Activation markers related to inflammatory responses and cartilage degeneration in the right knee joints were evaluated by serum analysis and western blotting. Results: HWD decreased in the MIA control group but showed a dose-dependent elevation after clove treatment. Clove treatment inhibited inflammatory factors by PI3K/Akt/NF-κB signaling pathways, while also activating antioxidant factors through Sirt1/AMPK signaling pathways. Clove treatment also suppressed matrix metalloproteinase (MMP) overexpression and significantly increased the levels of tissue inhibitors of metalloproteinases (TIMPs). Conclusions: Treatment with cloves effectively reversed MIA-induced effects. Therefore, clove treatment could have the potential to protect against or treat OA.

양혈윤부탕(養血潤膚湯)의 면역(免疫) 조절작용(調節作用)을 통한 항알러지 효능(效能) (Inhibitory Effects of Yanghyelyoonbutang (YHYBT) on Allergic Reaction and Pro-Inflammatory Cytokines in Various Cell Lines)

  • 이경미;구영선;김동희
    • 혜화의학회지
    • /
    • 제15권2호
    • /
    • pp.121-134
    • /
    • 2006
  • This study saw the anti-allergy effect by the immunity regulation action of Yanghyelyoonbotang (YHYBT) consists 12 kinds of herbal medicine agents. Consequently, YHYBT controlled the amount of secretion of various infla- mmatory cytokines, chemokine, monocyte chemotactic protein and histamine from cells (HMC-1, THP-1, EoL-1) stimulated by PMA, A23187 or HDM. 1. YHYBT did not show cytotoxicity on cultured human fibroblast cells under 250 ${\mu}g/m\ell$ concentration. 2. YHYBT suppressed IL-8, TNF-$\alpha$, IL-6 mRNA expression in the HMC-1 cell stimulated with PMA and A23187. 3. YHYBT significantly suppressed IL-6 release in the THP-1 and EoL-1 cell stimulated with HDM. 4. YHYBT significantly suppressed histamine release in the HMC-1 cell stimulated with PMA and A23187 in a dose-dependent. 5. YHYBT significantly suppressed $\beta$-Hexosaminidase release in the HMC-1 cell stimulated with A23187 in a dose-dependent. 6. YHYBT suppressed NF-$\kappa$B gene expression in the RBL-2H3 cell stimulated with PMA in a dose-dependent. These results suggested that YHYBT has suppressive effects on allergic reaction and pro-inflammatory cytokines in various cell lines through the regulation of immune system. YHYBT has potential to use as an antiallergic agents.

  • PDF

인간 단핵구 THP-1 세포에서 β-glucan으로 인한 TNF-α 분비 증가 효과 (β-glucan Stimulates Release of TNF-α in Human Monocytic THP-1 Cells)

  • 금보람;현진이;최소희;진지영;정지우;임종민;박동찬;조광근;최은영;최인순
    • 생명과학회지
    • /
    • 제27권11호
    • /
    • pp.1256-1261
    • /
    • 2017
  • ${\beta}$-glucan은 균류의 세포벽, 귀리, 효모, 식물의 구성물질로, 면역 세포의 활성, 전염증성 사이토카인 분비, 항암효능과 같은 면역 체계에 중요한 역할을 한다. 면역계는 건강한 몸 상태의 항상성을 유지한다. 하지만, 병원성 물질이 신체 내로 들어오게 되면 면역 항상성이 무너지게 되고, 질병이 유발될 수 있다. 따라서, 본 연구는 ${\beta}$-glucan이 인간 단핵구 THP-1 세포에서 면역 조절 효과에 이용될 수 있는지를 확인하였다. ${\beta}$-glucan은 THP-1 세포에 다양한 농도를 처리하여 배양하였으며, $TNF-{\alpha}$ mRNA 발현과 단백질 수준을 Real-time PCR와 ELISA을 이용하여 분석하였다. 또한 전사 인자 $NF-{\kappa}B$ p50와 MAPKs 신호 기작 활성을 western blot을 이용하여 분석하였다. ${\beta}$-glucan으로 유도된 MAPKs와 $NF-{\kappa}B$ p50 활성이 증가하였다. ${\beta}$-glucan이 인간 단핵구 THP-1 세포에서 $TNF-{\alpha}$ 생성에 의해 면역 증강 효과를 나타내며, 이는 MAPKs와 $NF-{\kappa}B$ p50 신호 전달을 통해 나타내는 것을 제시한다. 종합적으로, 본 연구는 ${\beta}$-glucan이 인간 단핵구 THP-1 세포를 통해 면역 체계를 향상시킬 것이라고 사료된다.

HaCaT 각질형성세포에서 개똥쑥(Artemisia annua L) 유래 성분인 Artemisinic acid의 Macrophage-derived Chemokine 억제 효과 (Inhibitory Effect of Artemisinic Acid Isolated from Artemisia Annua L on the MDC in HaCaT Keratinocytes)

  • 강경진;강나진;한상철;구동환;김영수;이진혁;김상철;박덕훈;이종성;강희경;유은숙
    • 생약학회지
    • /
    • 제43권3호
    • /
    • pp.217-223
    • /
    • 2012
  • In the present study, we investigated anti-inflammatory activity of artemisinic acid in HaCaT cells and RAW264.7 cells. Artemisinic acid showed inhibitory activity on macrophage-derived chemokines (MDC) expression, a factor related with atopic dermatitis (AD), in interferon (IFN)-${\gamma}$ and tumor necrosis factor (TNF)-${\alpha}$-stimulated HaCaT cells. In the study on action mechanism, pretreated artemisinic acid reduced the phosphorylation of STAT1 and p38 and the degradation of $I{\kappa}B$ by IFN-${\gamma}$ and TNF-${\alpha}$ stimulations. However, artemisinic acid didn't show the inhibitory activity on LPS-induced inflammatory mediators (NO, $PGE_2$, IL-6) in RAW264.7 cell. These results indicate that artemisinic acid inhibits IFN-${\gamma}$ and TNF-${\alpha}$-induced MDC expression through inhibition of signal factors, STAT1, NF-${\kappa}B$, and p38, in HaCaT keratinocytes.

Transduced Tat-CIAPIN1 reduces the inflammatory response on LPS- and TPA-induced damages

  • Yeo, Hyeon Ji;Shin, Min Jea;You, Ji Ho;Kim, Jeong Su;Kim, Min Young;Kim, Dae Won;Kim, Duk-Soo;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • 제52권12호
    • /
    • pp.695-699
    • /
    • 2019
  • Cytokine-induced apoptosis inhibitor 1 (CIAPIN1), known as an anti-apoptotic and signal-transduction protein, plays a pivotal role in a variety of biological processes. However, the role of CIAPIN1 in inflammation is unclear. We investigated the protective effects of CIAPIN1 in lipopolysaccharide (LPS)-exposed Raw 264.7 cells and against inflammatory damage induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in a mouse model using cell-permeable Tat-CIAPIN1. Transduced Tat-CIAPIN1 significantly reduced ROS production and DNA fragmentation in LPS-exposed Raw 264.7 cells. Also, Tat-CIAPIN1 inhibited MAPKs and NF-κB activation, reduced the expression of Bax, and cleaved caspase-3, COX-2, iNOS, IL-6, and TNF-α in LPS-exposed cells. In a TPA-induced animal model, transduced Tat-CIAPIN1 drastically decreased inflammation damage and inhibited COX-2, iNOS, IL-6, and TNF-α expression. Therefore, these findings suggest that Tat-CIAPIN1 might lead to a new strategy for the treatment of inflammatory skin disorders.

Metformin Down-regulates $TNF-{\alpha}$ Secretion via Suppression of Scavenger Receptors in Macrophages

  • Hyun, Bobae;Shin, Seulmee;Lee, Aeri;Lee, Sungwon;Song, Youngcheon;Ha, Nam-Joo;Cho, Kyung-Hea;Kim, Kyungjae
    • IMMUNE NETWORK
    • /
    • 제13권4호
    • /
    • pp.123-132
    • /
    • 2013
  • Obesity is consistently increasing in prevalence and can trigger insulin resistance and type 2 diabetes. Many lines of evidence have shown that macrophages play a major role in inflammation associated with obesity. This study was conducted to determine metformin, a widely prescribed drug for type 2 diabetes, would regulate inflammation through down-regulation of scavenger receptors in macrophages from obesity-induced type 2 diabetes. RAW 264.7 cells and peritoneal macrophages were stimulated with LPS to induce inflammation, and C57BL/6N mice were fed a high-fat diet to generate obesity-induced type 2 diabetes mice. Metformin reduced the production of NO, $PGE_2$ and pro-inflammatory cytokines ($IL-1{\beta}$, IL-6 and $TNF-{\alpha}$) through down-regulation of $NF-{\kappa}B$ translocation in macrophages in a dose-dependent manner. On the other hand, the protein expressions of anti-inflammatory cytokines, IL-4 and IL-10, were enhanced or maintained by metformin. Also, metformin suppressed secretion of $TNF-{\alpha}$ and reduced the protein and mRNA expression of $TNF-{\alpha}$ in obese mice as well as in macrophages. The expression of scavenger receptors, CD36 and SR-A, were attenuated by metformin in macrophages and obese mice. These results suggest that metformin may attenuate inflammatory responses by suppressing the production of $TNF-{\alpha}$ and the expressions of scavenger receptors.

창상을 유발한 흰쥐에서 금은화(金銀花) 추출물의 치료 효과 (The Effect of Lonicera japonica Extract in Wound-induced Rats)

  • 원제훈;우창훈
    • 한방재활의학과학회지
    • /
    • 제30권1호
    • /
    • pp.47-61
    • /
    • 2020
  • Objectives This study is carried out to investigate the effects of Lonicera japonica in wound-induced rats. Methods Rats were divided into 5 groups; normal (Nor), control (Veh), positive comparison (PC), Lonicera japonica 100 mg/kg (LL), Lonicera japonica 200 mg/kg (LH), each n=8. Total polyphenol and flavonoid were quantified. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3 ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging activation were measured. Reactive oxygen species (ROS) was measured in serum. Antioxidant factors and inflammatory factors were measured in skin tissue, and also hydroxyproline content. Skin tissue was analyzed by Hematoxylin & Eosin and Masson's trichrome staining method. Results Total polyphenol and flavonoid were 32.86±0.14 mg/g and 67.17±0.57 mg/g. The IC50 values of DPPH and ABTS free radical scavenging activation were 26.69±1.50 ㎍/mL and 49.33±4.52 ㎍/mL. ROS was significantly lower in LL and LH groups. Nuclear factor-erythroid 2-related factor 2 (Nrf2) was significantly higher in LH group and higher in LL group but not significant. Superoxide dismutase 1 (SOD-1), catalase, and heme oxygenase 1 (HO-1) were significantly higher in LL and LH groups. Nuclear factor kappa-B p65 (NF-κBp65), phosphorylated iκBα (p-iκBα), cyclooxygenase 2 (COX-2), and tumor necrosis factor alpha (TNF-α) were significantly lower in LL and LH groups. Hydroxyproline was significantly higher in LL and LH groups. The histopathologic analysis showed that skin tissue had recovered further more in LL and LH groups than in Veh group. Conclusions These results suggest that Lonicera japonica has the anti-oxidant, anti-inflammatory and healing effects in wound-induced rats.

Th17과 자가면역 관절염 (The Th17 and Autoimmune Arthritis)

  • 조미라;허유정;박진실;이선영;성영철;김호연
    • IMMUNE NETWORK
    • /
    • 제7권1호
    • /
    • pp.10-17
    • /
    • 2007
  • Autoimmune arthritis, such as rheumatoid arthritis (RA), is a chronic inflammatory disorder that primarily affects the joints and then results in their progressive destruction. Effector Th cells have been classified as Th1 and Th2 subsets based on their cytokine expression profiles and immune regulatory function. Another subset of T cells termed Th17 was recendy discovered and known to selectively produce IL-17. Also, Th17 was shown to be generated by TGF${\beta}$ and IL-6 and maintained by IL-23. IL-17 is a proinflammatory cytokine that is considered to involve the development of various inflammatory autoimmune diseases such as RA, asthma, lupus, and allograft rejection. IL-17 is present in the sera, synovial fluids and synovial biopsies of most RA patient. IL-17 activates RA synovial fibroblasts to synthesize IL-6, IL-8 and VEGF via PI3K/Akt and NF-${\kappa}B$ dependent pathway. IL-17 increases IL-6 production, collagen destruction and collagen synthesis. In addition, it not only causes bone resorption but also increases osteoclastogenesis and fetal cartilage destruction. Inhibition of the IL-17 production may contribute a novel therapeutic approach along with potent anti-inflammatory effect and with less immunosuppressive effect on host defenses.

Magnoliae Cortex and maize modulate Porphyromonas gingivalis-induced inflammatory reactions

  • Kim, Jae-Yoon;Kim, Kyoung-Hwa;Kwag, Eun-Hye;Seol, Yang Jo;Lee, Yong Moo;Ku, Young;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • 제48권2호
    • /
    • pp.70-83
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the capacity of single and combined applications of the bark of the stems and roots of Magnolia officinalis Rehd. et Wils. (Magnoliae Cortex) and Zea mays L. (maize) to modulate inflammation in RAW 264.7 cells stimulated with Porphyromonas gingivalis. Methods: RAW 264.7 cells were stimulated with P. gingivalis, and Magnoliae Cortex and/or maize was added. Cytotoxicity and the capacity to modulate inflammation were determined with a methylthiazol tetrazolium (MTT) assay, nitrite production, enzyme-linked immunosorbent assay (ELISA), and western blotting. Results: Treatment with Magnoliae Cortex and/or maize inhibited nuclear transcription factor ${\kappa}B$ ($NF-{\kappa}B$) pathway activation and nuclear p44/42 mitogen-activated protein kinase (MAPK) and inducible nitric oxide synthase (iNOS) protein expression in P. gingivalis-stimulated RAW 264.7 cells. Moreover, the treatments suppressed cytokines (prostaglandin $E_2$ [$PGE_2$], interleukin $[IL]-1{\beta}$, and IL-6) and nitrite production. Conclusions: Both Magnoliae Cortex and maize exerted an anti-inflammatory effect on P. gingivalis-stimulated RAW 264.7 cells, and this effect was more pronounced when the extracts were combined. These findings show that these extracts may be beneficial for slowing the progression of periodontal disease.