DOI QR코드

DOI QR Code

Metformin Down-regulates $TNF-{\alpha}$ Secretion via Suppression of Scavenger Receptors in Macrophages

  • 투고 : 2013.06.18
  • 심사 : 2013.07.02
  • 발행 : 2013.08.30

초록

Obesity is consistently increasing in prevalence and can trigger insulin resistance and type 2 diabetes. Many lines of evidence have shown that macrophages play a major role in inflammation associated with obesity. This study was conducted to determine metformin, a widely prescribed drug for type 2 diabetes, would regulate inflammation through down-regulation of scavenger receptors in macrophages from obesity-induced type 2 diabetes. RAW 264.7 cells and peritoneal macrophages were stimulated with LPS to induce inflammation, and C57BL/6N mice were fed a high-fat diet to generate obesity-induced type 2 diabetes mice. Metformin reduced the production of NO, $PGE_2$ and pro-inflammatory cytokines ($IL-1{\beta}$, IL-6 and $TNF-{\alpha}$) through down-regulation of $NF-{\kappa}B$ translocation in macrophages in a dose-dependent manner. On the other hand, the protein expressions of anti-inflammatory cytokines, IL-4 and IL-10, were enhanced or maintained by metformin. Also, metformin suppressed secretion of $TNF-{\alpha}$ and reduced the protein and mRNA expression of $TNF-{\alpha}$ in obese mice as well as in macrophages. The expression of scavenger receptors, CD36 and SR-A, were attenuated by metformin in macrophages and obese mice. These results suggest that metformin may attenuate inflammatory responses by suppressing the production of $TNF-{\alpha}$ and the expressions of scavenger receptors.

키워드

참고문헌

  1. Flegal, K. M., M. D. Carroll, C. L. Ogden, and L. R. Curtin. 2010. Prevalence and trends in obesity among US adults, 1999-2008. JAMA 303: 235-241. https://doi.org/10.1001/jama.2009.2014
  2. Bae, N. K., I. S. Kwon, and Y. C. Cho. 2009. Ten year change of body mass index in Korean: 1997-2007. Korean J. Obes. 18: 24-30.
  3. Mokdad, A. H., E. S. Ford, B. A. Bowman, W. H. Dietz, F. Vinicor, V. S. Bales, and J. S. Marks. 2003. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 289: 76-79.
  4. Grundy, S. M. 2004. Obesity, metabolic syndrome, and cardiovascular disease. J. Clin. Endocrinol. Metab. 89: 2595-2600. https://doi.org/10.1210/jc.2004-0372
  5. Shaw, J. E., R. A. Sicree, and P. Z. Zimmet. 2010. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes. Res. Clin. Pract. 87: 4-14. https://doi.org/10.1016/j.diabres.2009.10.007
  6. Alberti, K. G. and P. Z. Zimmet. 1998. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 15: 539-553 https://doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S
  7. Shoelson, S. E., L. Herrero, and A. Naaz. 2007. Obesity, inflammation, and insulin resistance. Gastroenterology 132: 2169-2180. https://doi.org/10.1053/j.gastro.2007.03.059
  8. Qatanani, M. and M. A. Lazar. 2007. Mechanisms of obesityassociated insulin resistance: many choices on the menu. Genes. Dev. 21: 1443-1455. https://doi.org/10.1101/gad.1550907
  9. McArdle, M. A., O. M. Finucane, R. M. Connaughton, A. M. McMorrow, and H. M. Roche. 2013. Mechanisms of obesity- induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front. Endocrinol. (Lausanne). 4: 52.
  10. Olefsky, J. M. and C. K. Glass. 2010. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72: 219-246. https://doi.org/10.1146/annurev-physiol-021909-135846
  11. Kim, J. Y. 2010. Patho-/physiological roles of adipose tissue macrophages. BioWave 12: 1-12.
  12. Chawla, A., K. D. Nguyen, and Y. P. Goh. 2011. Macrophage- mediated inflammation in metabolic disease. Nat. Rev. Immunol. 11: 738-749. https://doi.org/10.1038/nri3071
  13. Osborn, O. and J. M. Olefsky. 2012. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 18: 363-374. https://doi.org/10.1038/nm.2627
  14. Lumeng, C. N., J. L. Bodzin, and A. R. Saltiel. 2007. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117: 175-184. https://doi.org/10.1172/JCI29881
  15. Patel, P. S., E. D. Buras, and A. Balasubramanyam. 2013. The role of the immune system in obesity and insulin resistance. J. Obes. 2013: 616193.
  16. Goldstein, J. L., Y. K. Ho, S. K. Basu, and M. S. Brown. 1979. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl. Acad. Sci. U. S. A. 76: 333-337. https://doi.org/10.1073/pnas.76.1.333
  17. Ley, K., Y. I. Miller, and C. C. Hedrick. 2011. Monocyte and macrophage dynamics during atherogenesis. Arterioscler. Thromb. Vasc. Biol. 31: 1506-1516. https://doi.org/10.1161/ATVBAHA.110.221127
  18. Kzhyshkowska, J., C. Neyen, and S. Gordon. 2012. Role of macrophage scavenger receptors in atherosclerosis. Immunobiology 217: 492-502. https://doi.org/10.1016/j.imbio.2012.02.015
  19. Baranova I. N., R. Kurlander, A. V. Bocharov, T. G. Vishnyakova, Z. Chen, A. T. Remaley, G. Csako, A. P. Patterson, and T. L. Eggerman. 2008. Role of human CD36 in bacterial recognition, phagocytosis, and pathogen-induced JNK-mediated signaling. J. Immunol. 181: 7147-7156. https://doi.org/10.4049/jimmunol.181.10.7147
  20. Chen, Y., F. Wermeling, J. Sundqvist, A. B. Jonsson, K. Tryggvason, T. Pikkarainen, and M. C. Karlsson. 2010. A regulatory role for macrophage class A scavenger receptors in TLR4-mediated LPS responses. Eur. J. Immunol. 40: 1451-1460. https://doi.org/10.1002/eji.200939891
  21. Yu, H., T. Ha, L. Liu, X. Wang, M. Gao, J. Kelley, R. Kao, D. Williams, and C. Li. 2012. Scavenger receptor A (SR-A) is required for LPS-induced TLR4 mediated NF-κB activation in macrophages. Biochim. Biophys. Acta. 1823: 1192-1198. https://doi.org/10.1016/j.bbamcr.2012.05.004
  22. Cai, L., Z. Wang, A. Ji, J. M. Meyer, and D. R. van der Westhuyzen. 2012. Scavenger receptor CD36 expression contributes to adipose tissue inflammation and cell death in diet- induced obesity. PLoS One 7: e36785. https://doi.org/10.1371/journal.pone.0036785
  23. Bailey, C. J. and R. C. Turner. 1996. Metformin. N. Engl. J. Med. 334: 574-579. https://doi.org/10.1056/NEJM199602293340906
  24. Hundal, R. S., M. Krssak, S. Dufour, D. Laurent, V. Lebon, V. Chandramouli, S. E. Inzucchi, W. C. Schumann, K. F. Petersen, B. R. Landau, and G. I. Shulman. 2000. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 49: 2063-2069. https://doi.org/10.2337/diabetes.49.12.2063
  25. Hundal, R. S. and S. E. Inzucchi. 2003. Metformin: new understandings, new uses. Drugs 63: 1879-1894. https://doi.org/10.2165/00003495-200363180-00001
  26. Correia, S., C. Carvalho, M. S. Santos, R. Seica, C. R. Oliveira, and P. I. Moreira. 2008. Mechanisms of action of metformin in type 2 diabetes and associated complications: an overview. Mini Rev. Med. Chem. 8: 1343-1354. https://doi.org/10.2174/138955708786369546
  27. Zhou, G., R. Myers, Y. Li, Y. Chen, X. Shen, J. Fenyk- Melody, M. Wu, J. Ventre, T. Doebber, N. Fujii, N. Musi, M. F. Hirshman, L. J. Goodyear, and D. E. Moller. 2001. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108: 1167-1174. https://doi.org/10.1172/JCI13505
  28. Musi, N., M. F. Hirshman, J. Nygren, M. Svanfeldt, P. Bavenholm, O. Rooyackers, G. Zhou, J. M. Williamson, O. Ljunqvist, S. Efendic, D. E. Moller, A. Thorell, and L. J. Goodyear. 2002. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes. 51: 2074-2081. https://doi.org/10.2337/diabetes.51.7.2074
  29. Lee, S. K., J. O. Lee, J. H. Kim, S. J. Kim, G. Y. You, J. W. Moon, J. H. Jung, S. H. Park, K. O. Uhm, J. M. Park, P. G. Suh, and H. S. Kim. 2011. Metformin sensitizes insulin signaling through AMPK-mediated PTEN down-regulation in preadipocyte 3T3-L1 cells. J. Cell. Biochem. 112: 1259-1267. https://doi.org/10.1002/jcb.23000
  30. Nath, N., M. Khan, M. K. Paintlia, I. Singh, M. N. Hoda, and S. Giri. 2009. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J. Immunol. 182: 8005-8014. https://doi.org/10.4049/jimmunol.0803563
  31. Tsoyi, K., H. J. Jang, I. T. Nizamutdinova, Y. M. Kim, Y. S. Lee, H. J. Kim, H. G. Seo, J. H. Lee, and K. C. Chang. 2011. Metformin inhibits HMGB1 release in LPS-treated RAW 264.7 cells and increases survival rate of endotoxaemic mice. Br. J. Pharmacol. 162: 1498-1508.
  32. Kalariya, N. M., M. Shoeb, N. H. Ansari, S. K. Srivastava, and K. V. Ramana. 2012. Antidiabetic drug metformin suppresses endotoxin-induced uveitis in rats. Invest. Ophthalmol. Vis. Sci. 53: 3431-3440. https://doi.org/10.1167/iovs.12-9432
  33. Yuan, H., L. Li, W. Zheng, J. Wan, P. Ge, H. Li, and L. Zhang. 2012. Antidiabetic drug metformin alleviates endotoxin- induced fulminant liver injury in mice. Int. Immunopharmacol. 12: 682-688. https://doi.org/10.1016/j.intimp.2012.01.015
  34. Kim, H. K. and I. K. Lee. 2006. Endoplasmic reticulum (ER) stress and vascular complication. J. Korean Diabetes. Assoc. 30: 145-150. https://doi.org/10.4093/jkda.2006.30.3.145
  35. Serhan, C. N. and B. Levy. 2003. Success of prostaglandin E2 in structure-function is a challenge for structure-based therapeutics. Proc. Natl. Acad. Sci. U. S. A. 100: 8609-8611. https://doi.org/10.1073/pnas.1733589100
  36. Nathan, C. 1997. Inducible nitric oxide synthase: what difference does it make? J. Clin. Invest. 100: 2417-2423. https://doi.org/10.1172/JCI119782
  37. Sun, L., J. Liu, D. Cui, J. Li, Y. Yu, L. Ma, and L. Hu. 2010. Anti-inflammatory function of Withangulatin A by targeted inhibiting COX-2 expression via MAPK and NF-kappaB pathways. J. Cell. Biochem. 109: 532-541.
  38. Vila-del Sol, V. and M. Fresno. 2005. Involvement of TNF and NF-kappa B in the transcriptional control of cyclooxygenase- 2 expression by IFN-gamma in macrophages. J. Immunol. 174: 2825-2833. https://doi.org/10.4049/jimmunol.174.5.2825
  39. Dinarello, C. A. 2000. Proinflammatory cytokines. Chest. 118: 503-508. https://doi.org/10.1378/chest.118.2.503
  40. Chi, H., S. P. Barry, R. J. Roth, J. J. Wu, E. A. Jones, A. M. Bennett, and R. A. Flavell. 2006. Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc. Natl. Acad. Sci. U. S. A. 103: 2274-2279. https://doi.org/10.1073/pnas.0510965103
  41. Opal, S. M. and V. A. DePalo. 2000. Anti-inflammatory cytokines. Chest 117: 1162-1172. https://doi.org/10.1378/chest.117.4.1162
  42. Ma, X. 2001. TNF-alpha and IL-12: a balancing act in macrophage functioning. Microbes. Infect. 3: 121-129. https://doi.org/10.1016/S1286-4579(00)01359-9
  43. Locksley, R. M., N. Killeen, and M. J. Lenardo. 2001. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 104: 487-501. https://doi.org/10.1016/S0092-8674(01)00237-9
  44. Maini, R. N. and P. C. Taylor. 2000. Anti-cytokine therapy for rheumatoid arthritis. Annu. Rev. Med. 51: 207-229. https://doi.org/10.1146/annurev.med.51.1.207
  45. Aggarwal, B. B. 2003. Signalling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol. 3: 745-756 https://doi.org/10.1038/nri1184
  46. Charles, K. A., H. Kulbe, R. Soper, M. Escorcio-Correia, T. Lawrence, A. Schultheis, P. Chakravarty, R. G. Thompson, G. Kollias, J. F. Smyth, F. R. Balkwill, and T. Hagemann. 2009. The tumor-promoting actions of TNF-alpha involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J. Clin. Invest. 119: 3011-3023. https://doi.org/10.1172/JCI39065
  47. Ji, Z. Z., Z. Dai, and Y. C. Xu. 2011. A new tumor necrosis factor (TNF)-$\alpha$ regulator, lipopolysaccharides-induced TNF-$\alpha$ factor, is associated with obesity and insulin resistance. Chin. Med. J (Engl). 124: 177-182.
  48. Hotamisligil, G. S., D. L. Murray, L. N. Choy, and B. M. Spiegelman. 1994. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc. Natl. Acad. Sci. U. S. A. 91: 4854-4858. https://doi.org/10.1073/pnas.91.11.4854
  49. Ziccardi, P., F. Nappo, G. Giugliano, K. Esposito, R. Marfella, M. Cioffi, F. D'Andrea, A. M. Molinari, and D. Giugliano. 2002. Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over one year. Circulation 105: 804-809. https://doi.org/10.1161/hc0702.104279
  50. Simons, P. J., P. S. van den Pangaart, J. M. Aerts, and L. Boon. 2007. Pro-inflammatory delipidizing cytokines reduce adiponectin secretion from human adipocytes without affecting adiponectin oligomerization. J. Endocrinol. 192: 289-299. https://doi.org/10.1677/JOE-06-0047
  51. Popa, C., M. G. Netea, P. L. van Riel, J. W. van der Meer, and A. F. Stalenhoef. 2007. The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J. Lipid. Res. 48: 751-762. https://doi.org/10.1194/jlr.R600021-JLR200
  52. Kleemann, R., S. Zadelaar, and T. Kooistra. 2008. Cytokines and atherosclerosis: a comprehensive review of studies in mice. Cardiovasc. Res. 79: 360-376. https://doi.org/10.1093/cvr/cvn120
  53. Skoog, T., W. Dichtl, S. Boquist, C. Skoglund-Andersson, F. Karpe, R. Tang, M. G. Bond, U. de Faire, J. Nilsson, P. Eriksson, and A. Hamsten. 2002. Plasma tumour necrosis factor- alpha and early carotid atherosclerosis in healthy middle- aged men. Eur. Heart. J. 23: 376-383. https://doi.org/10.1053/euhj.2001.2805
  54. Mei, C. L., Z. J. Chen, Y. H. Liao, Y. F. Wang, H. Y. Peng, and Y. Chen. 2007. Interleukin-10 inhibits the down-regulation of ATP binding cassette transporter A1 by tumour necrosis factor-alpha in THP-1 macrophage-derived foam cells. Cell. Biol. Int. 31: 1456-1461. https://doi.org/10.1016/j.cellbi.2007.06.009
  55. Hashizume, M. and M. Mihara. 2012. Atherogenic effects of TNF-α and IL-6 via up-regulation of scavenger receptors. Cytokine. 58: 424-430. https://doi.org/10.1016/j.cyto.2012.02.010
  56. Spagnoli, L. G., E. Bonanno, G. Sangiorgi, and A. Mauriello. 2007. Role of inflammation in atherosclerosis. J. Nucl. Med. 48: 1800-1815. https://doi.org/10.2967/jnumed.107.038661
  57. Tak, P. P. and G. S. Firestein. 2001. NF-kappaB: a key role in inflammatory diseases. J. Clin. Invest. 107: 7-11 https://doi.org/10.1172/JCI11830

피인용 문헌

  1. Prevention of hepatocellular carcinoma by correction of metabolic abnormalities: Role of statins and metformin. vol.7, pp.8, 2013, https://doi.org/10.4254/wjh.v7.i8.1105
  2. Guanylin-Guanylyl cyclase-C signaling in macrophages regulates mesenteric fat inflammation induced by high-fat diet vol.62, pp.10, 2013, https://doi.org/10.1507/endocrj.ej15-0193
  3. Hyperreactivity of Blood Leukocytes in Patients with NAFLD to Ex Vivo Lipopolysaccharide Treatment Is Modulated by Metformin and Phosphatidylcholine but Not by Alpha Ketoglutarate vol.10, pp.12, 2013, https://doi.org/10.1371/journal.pone.0143851
  4. Metformin Changes the Relationship between Blood Monocyte Toll-Like Receptor 4 Levels and Nonalcoholic Fatty Liver Disease— Ex Vivo Studies vol.11, pp.3, 2013, https://doi.org/10.1371/journal.pone.0150233
  5. Autophagy: controlling cell fate in rheumatic diseases vol.12, pp.9, 2016, https://doi.org/10.1038/nrrheum.2016.92
  6. Pre-Clinical Study for the Antidiabetic Potential of Selenium Nanoparticles vol.177, pp.2, 2017, https://doi.org/10.1007/s12011-016-0876-z
  7. Metformin Synergizes With Conventional and Adjuvant Analgesic Drugs to Reduce Inflammatory Hyperalgesia in Rats : vol.124, pp.4, 2013, https://doi.org/10.1213/ane.0000000000001561
  8. Metformin ameliorates insulitis in STZ-induced diabetic mice vol.5, pp.None, 2017, https://doi.org/10.7717/peerj.3155
  9. The IGF system in patients with type 2 diabetes: associations with markers of cardiovascular target organ damage vol.176, pp.5, 2013, https://doi.org/10.1530/eje-16-0940
  10. CD36 overexpression: a possible etiopathogenic mechanism of atherosclerosis in patients with prediabetes and diabetes vol.9, pp.None, 2013, https://doi.org/10.1186/s13098-017-0253-x
  11. Aegle marmelos differentially affects hepatic markers of glycolysis, insulin signalling pathway, hypoxia, and inflammation in HepG2 cells grown in fructose versus glucose-rich environment vol.438, pp.1, 2018, https://doi.org/10.1007/s11010-017-3108-8
  12. Differential Expression of Human Peripheral Mononuclear Cells Phenotype Markers in Type 2 Diabetic Patients and Type 2 Diabetic Patients on Metformin vol.9, pp.None, 2013, https://doi.org/10.3389/fendo.2018.00537
  13. Anti-inflammatory effects of Metformin improve the neuropathic pain and locomotor activity in spinal cord injured rats: introduction of an alternative therapy vol.56, pp.11, 2013, https://doi.org/10.1038/s41393-018-0168-x
  14. Metformin Monotherapy Downregulates Diabetes-Associated Inflammatory Status and Impacts on Mortality vol.10, pp.None, 2013, https://doi.org/10.3389/fphys.2019.00572
  15. Metformin decreases LPS-induced inflammatory response in rabbit annulus fibrosus stem/progenitor cells by blocking HMGB1 release vol.11, pp.22, 2013, https://doi.org/10.18632/aging.102453
  16. Anti-Inflammatory Strategies Targeting Metaflammation in Type 2 Diabetes vol.25, pp.9, 2013, https://doi.org/10.3390/molecules25092224
  17. Metformin as a Potential Agent in the Treatment of Multiple Sclerosis vol.21, pp.17, 2013, https://doi.org/10.3390/ijms21175957
  18. Clinical Evidence of Antidepressant Effects of Insulin and Anti-Hyperglycemic Agents and Implications for the Pathophysiology of Depression—A Literature Review vol.21, pp.18, 2020, https://doi.org/10.3390/ijms21186969
  19. Immunomodulatory Effects of Formulation of Channa micropeltes and Moringa oleifera through Anti-Inflammatory Cytokines Regulation in Type 1 Diabetic Mice vol.26, pp.3, 2013, https://doi.org/10.34172/ps.2020.43
  20. Three-tissue microphysiological system for studying inflammatory responses in gut-liver Axis vol.22, pp.4, 2013, https://doi.org/10.1007/s10544-020-00519-y
  21. Maternal high-fat diet activates hepatic interleukin-4 in rat male offspring accompanied by increased eosinophil infiltration vol.320, pp.1, 2013, https://doi.org/10.1152/ajpgi.00153.2019
  22. Determining Factors in the Therapeutic Success of Checkpoint Immunotherapies against PD-L1 in Breast Cancer: A Focus on Epithelial-Mesenchymal Transition Activation vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/6668573
  23. Effects of Probiotic Supplementation on Inflammatory Markers and Glucose Homeostasis in Adults With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis vol.12, pp.None, 2013, https://doi.org/10.3389/fphar.2021.770861
  24. Metformin ameliorates the status epilepticus- induced hippocampal pathology through possible mTOR modulation vol.29, pp.1, 2013, https://doi.org/10.1007/s10787-020-00782-8
  25. Increased metformin dosage suppresses pro-inflammatory cytokine levels in systemic circulation and might contribute to its beneficial effects vol.42, pp.3, 2021, https://doi.org/10.1080/15321819.2020.1862861
  26. Metformin and Vitamin D Modulate Inflammation and Autophagy during Adipose-Derived Stem Cell Differentiation vol.22, pp.13, 2013, https://doi.org/10.3390/ijms22136686
  27. Prevention of Hypertensive Disorders of Pregnancy-Is There a Place for Metformin? vol.10, pp.13, 2021, https://doi.org/10.3390/jcm10132805
  28. Advanced glycation end products and their receptors in serum of patients with type 2 diabetes vol.11, pp.1, 2013, https://doi.org/10.1038/s41598-021-92630-0
  29. The cumulative dose-dependent effects of metformin on the development of tuberculosis in patients newly diagnosed with type 2 diabetes mellitus vol.21, pp.1, 2021, https://doi.org/10.1186/s12890-021-01667-4
  30. Metformin activated AMPK signaling contributes to the alleviation of LPS-induced inflammatory responses in bovine mammary epithelial cells vol.17, pp.1, 2013, https://doi.org/10.1186/s12917-021-02797-x
  31. Metformin attenuates silica-induced pulmonary fibrosis via AMPK signaling vol.19, pp.1, 2013, https://doi.org/10.1186/s12967-021-03036-5