• Title/Summary/Keyword: anti-glycation activity

Search Result 31, Processing Time 0.038 seconds

Ginseng improves cognitive deficit via the RAGE/NF-κB pathway in advanced glycation end product-induced rats

  • Tan, Xiaobin;Gu, Junfei;Zhao, Bingjie;Wang, Shuyuan;Yuan, Jiarui;Wang, Chunfei;Chen, Juan;Liu, Jiping;Feng, Liang;Jia, Xiaobin
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.116-124
    • /
    • 2015
  • Background: Ginseng, the root of Panax ginseng (PG), is used widely as a herbal medicine to prevent and treat various diseases. Panax ginseng has pharmacological effects on neurodegenerative diseases such as Alzheimer's disease (AD). The present study evaluated the neuroprotective effects of PG and its possible neuroprotective mechanisms in advanced glycation end product (AGE)-induced AD in a rat model. Methods: Advanced glycation end products were injected bilaterally into the CA3 region of the rats' brains. The Morris water maze test and step-down type passive avoidance test were performed to evaluate their memory and cognitive abilities. The oxidation indexes in the hippocampus were detected. Immunohistochemistry was conducted to visualize the receptors for advanced glycation end products (RAGEs) and nuclear factor-kappa-light-chain-enhancer of activated B cell (NF-${\kappa}B$). Results: Behavioral results showed that PG (1 g/kg, 0.5 g/kg, and 0.25 g/kg) significantly shortened the escape latency, remarkably increased the number of crossing times, significantly decreased the number of errors, and prolonged the latency in rats with AGE-induced AD. Panax ginseng also significantly reduced the malondialdehyde level, increased the glutathione content, and increased superoxide dismutase activity in the hippocampus. Panax ginseng significantly decreased the expression of RAGE and NF-${\kappa}B$. The blockade of anti-RAGE antibody could significantly reduce AGE-induced impairments and regulate these expressions. Conclusion: Our results demonstrated that PG significantly inhibits AGE-induced memory impairment and attenuates Alzheimer-like pathophysiological changes. These neuroprotective effects of PG may be associated with the RAGE/NF-${\kappa}B$ pathway. Our results provided the experimental basis for applying PG in preventing and treating AD.

Effects of Ethanol Extract of Ligularia fischeri Leaves on Freund's Complete Adjuvant-Induced Model of Chronic Arthritis in Mice

  • Choi, Eun-Mi
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.277-282
    • /
    • 2006
  • The aim of this study was to investigate the anti-inflammatory and anti-oxidant activity of Ligularia fischeri leaf extract on adjuvant induced arthritis in experimental mice. The oral administration of the L. fischeri leaf extract (LF), at doses of 100 and 200 mg/kg body weight once a day for 3 weeks, significantly reduced hindpaw swelling and the production of inflammatory cytokines (tumor necrosis factor(TNF)-${\alpha}$, interleukin(IL)-$1{\beta}$, and IL-6). Treatment with LF (100 mg/kg) also decreased the serum levels of triglyceride and low density lipoprotein(LDL)-cholesterol, and increased high density lipoprotein(HDL)-cholesterol contents compared with those of a control group. The induction of arthritis significantly increased oxidized proteins such as protein carbonyl, advanced oxidation protein products, and advanced glycation end-products in the lung, heart, and brain. Treatment with LF for 3 weeks reduced the levels of oxidized proteins. These results suggest that L. fischeri extract might be beneficial in the treatment of chronic inflammatory disorders.

Different Functional and Structural Characteristics between ApoA-I and ApoA-4 in Lipid-Free and Reconstituted HDL State: ApoA-4 Showed Less Anti-Atherogenic Activity

  • Yoo, Jeong-Ah;Lee, Eun-Young;Park, Ji Yoon;Lee, Seung-Taek;Ham, Sihyun;Cho, Kyung-Hyun
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.573-579
    • /
    • 2015
  • Apolipoprotein A-I and A-IV are protein constituents of high-density lipoproteins although their functional difference in lipoprotein metabolism is still unclear. To compare anti-atherogenic properties between apoA-I and apoA-4, we characterized both proteins in lipid-free and lipidbound state. In lipid-free state, apoA4 showed two distinct bands, around 78 and $67{\AA}$ on native gel electrophoresis, while apoA-I showed scattered band pattern less than $71{\AA}$. In reconstituted HDL (rHDL) state, apoA-4 showed three major bands around $101{\AA}$ and $113{\AA}$, while apoA-I-rHDL showed almost single band around $98{\AA}$ size. Lipid-free apoA-I showed 2.9-fold higher phospholipid binding ability than apoA-4. In lipid-free state, $BS_3$-crosslinking revealed that apoA-4 showed less multimerization tendency upto dimer, while apoA-I showed pentamerization. In rHDL state (95:1), apoA-4 was existed as dimer as like as apoA-I. With higher phospholipid content (255:1), five apoA-I and three apoA-4 were required to the bigger rHDL formation. Regardless of particle size, apoA-I-rHDL showed superior LCAT activation ability than apoA-4-rHDL. Uptake of acetylated LDL was inhibited by apoA-I in both lipid-free and lipid-bound state, while apoA-4 inhibited it only lipid-free state. ApoA-4 showed less anti-atherogenic activity with more sensitivity to glycation. In conclusion, apoA-4 showed inferior physiological functions in lipid-bound state, compared with those of apoA-I, to induce more pro-atherosclerotic properties.

Anti-diabetic and Anti-oxidative Activities of Extracts from Crataegus pinnatifida (산사 추출물의 항산화 및 항당뇨 활성)

  • Nam, Sang-Myeoung;Kang, Il-Jun;Shin, Mee-Hye
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.25 no.2
    • /
    • pp.270-277
    • /
    • 2015
  • This study was performed to investigate the antidiabetic and antioxidant activities of Crataegus pinnatifida which was extracted with water and different concentrations of EtOH (0~100%). The extraction yield of 70% EtOH (33.16%) was higher than that of 50% EtOH (27.79%), water (21.71%), 30% EtOH (21.88%) and 100% EtOH (19.03%). Total polyphenol contents of 50% EtOH extract from C. pinnatifida were the highest. DPPH and ABTS radical scavenging activities were $80.79{\pm}0.83%$ and $34.92{\pm}0.97%$ in 50% EtOH extract, respectively, which were higher than those of other extracts. The inhibitory activities of 50% ethanol extract from C. pinnatifida against advanced glycation end products (AGEs) formation and ${\alpha}$-glucosidase were determined to be $27.09{\pm}2.27%$ and $58.87{\pm}0.70%$, respectively. The inhibitory activity of water extract from C. pinnatifida against aldose reductase was higher ($30.68{\pm}1.41%$) than those of other extracts. Overall, 50% EtOH extract from C. pinnatifida showed the highest antidiabetic and antioxidant effects. These results suggest that 50% ethanol extracts from C. pinnatifida have potential as a useful ingredient with antidiabetic and antioxidant effects.

Preventive Effects of Rosa rugosa Root Extract on Advanced Glycation End product-Induced Endothelial Dysfunction (해당근 추출물의 항산화 활성 및 최종당화산물에 의한 혈관내피세포 기능장애 억제활성)

  • Nam, Mi-Hyun;Lee, Hyun-Sun;Hong, Chung-Oui;Koo, Yoon-Chang;Seo, Mun-Young;Lee, Kwang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.210-216
    • /
    • 2010
  • Rosa rugosa has traditionally been used as a folk remedy for diabetes. The objective of this study was therefore to demonstrate the inhibition of endothelial dysfunction activities through antioxidants and the anti-glycation of Rosa rugosa roots. Dried roots of Rosa rugosa were boiled in methanol for three hours, evaporated and lyophilized with a freeze-dryer. The methanolic extract of Rosa rugosa roots (RRE) was tested for antioxidant activities by measuring total polyphenol (TP) content, flavonoid content, 1,1-diphenyl-2-picrylhydrazyl free radical-scavenging activity (DPPH) assay, and ferric-reducing antioxidant power (FRAP) assay. The total TP content, flavonoid content, FRAP value, and $DPPHSC_{50}$ are $345.2\;{\mu}g$ gallic acid equivalents/mg dry matter (DM), $128.1\;{\mu}g$ quercetin equivalents/mg DM, 2.2 mM $FeSO_4$/mg DM and $34.2\;{\mu}g$ DM/mL, respectively. Treatment of RRE significantly lowered fluorescent formation due to advanced glycation reaction. In addition, reactive oxygen species (ROS) scavenging assay, monocyte adherent assay and transendothelial electrical resistance (TEER) assay were performed to investigate the possibility that RRE improves endothelial dysfunction-induced diabetic complications. The adhesion of THP-1 to treated HUVEC with RRE ($100\;{\mu}g/mL$; 33% and $500\;{\mu}g/mL$; 75%) was significantly reduced compared to HUVEC stimulated by glyceraldehydes-AGEs (advanced glycation end product). The TEER value ($88\;{\Omega}{\cdot}cm^2$) of stimulated HUVEC by glyceraldehydes-AGEs was reduced compared to non-stimulation ($113\;{\Omega}{\cdot}cm^2$). However, normalization with RRE increased endothelial permeability in a dose-dependent manner ($100\;{\mu}g/mL$; $102\;{\Omega}{\cdot}cm^2$ and $500\;{\mu}g/mL$; $106\;{\Omega}{\cdot}cm^2$). Thus, these results suggest that Rosa rugosa roots could be a novel candidate for the prevention of diabetic complications through antioxidants and inhibition of advanced glycation end product formation.

Hypericin, a Naphthodianthrone Derivative, Prevents Methylglyoxal-Induced Human Endothelial Cell Dysfunction

  • Do, Moon Ho;Kim, Sun Yeou
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.158-164
    • /
    • 2017
  • Methylglyoxal (MGO) is a highly reactive metabolite of glucose which is known to cause damage and induce apoptosis in endothelial cells. Endothelial cell damage is implicated in the progression of diabetes-associated complications and atherosclerosis. Hypericin, a naphthodianthrone isolated from Hypericum perforatum L. (St. John's Wort), is a potent and selective inhibitor of protein kinase C and is reported to reduce neuropathic pain. In this work, we investigated the protective effect of hypericin on MGO-induced apoptosis in human umbilical vein endothelial cells (HUVECs). Hypericin showed significant anti-apoptotic activity in MGO-treated HUVECs. Pretreatment with hypericin significantly inhibited MGO-induced changes in cell morphology, cell death, and production of intracellular reactive oxygen species. Hypericin prevented MGO-induced apoptosis in HUVECs by increasing Bcl-2 expression and decreasing Bax expression. MGO was found to activate mitogen-activated protein kinases (MAPKs). Pretreatment with hypericin strongly inhibited the activation of MAPKs, including P38, JNK, and ERK1/2. Interestingly, hypericin also inhibited the formation of AGEs. These findings suggest that hypericin may be an effective regulator of MGO-induced apoptosis. In conclusion, hypericin downregulated the formation of AGEs and ameliorated MGO-induced dysfunction in human endothelial cells.

Characterization of Anti-Advanced Glycation End Products (AGEs) and Radical Scavenging Constituents from Ainsliaea acerifolia (단풍취의 최종당화산물 생성 저해 및 라디칼 소거 물질의 동정)

  • Jeong, Gyeng Han;Kim, Tae Hoon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.759-764
    • /
    • 2017
  • Reactive oxygen species (ROS) and advanced glycation end products (AGEs) are valuable therapeutic targets for the regulation of diabetic complications. Activity-guided isolation of the ethylacetate (EtOAc)-soluble portion of 70% ethanolic extract from aerial parts of Ainsliaea acerifolia was performed, followed by AGE formation inhibition assay for the characterization of four dicaffeoylquinic acid derivatives of a previously known structure, methyl 3,5-di-O-caffeoyl-epi-quinate (1), 3,5-di-O-caffeoyl-epi-quinic acid (2), 4,5-di-O-caffeoyl-quinic acid (3), and methyl 4,5-di-O-caffeoyl-quinate (4). The structures of these compounds were confirmed by interpretation of nuclear magnetic resonance (NMR, $^1H-$, $^{13}C-NMR$, two-dimensional NMR) and mass spectroscopic data. Among the isolates, the major secondary metabolites, 3,5-di-O-caffeoyl-epi-quinic acid (2) and 4,5-di-O-caffeoyl-quinic acid (3) showed the most potent inhibitory effects against AGE formation with $IC_{50}$ values of $0.6{\pm}0.1{\mu}M$ and $0.4{\pm}0.1{\mu}M$, respectively. Furthermore, all isolated dicaffeoylquinic acid derivatives were evaluated for their radical scavenging activities using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical, and compound 3 exhibited the most potent inhibitory effect in a concentration-dependent manner. This result suggests that the caffeoylquinic acid dimers isolated from A. acerifolia might be beneficial for the prevention of diabetic complications and related diseases.

Industrial potential of domestic Zanthoxylum piperitum and Zanthoxylum schinifolium: Protective effect of both extracts on high glucose-induced neurotoxicity (국내산 초피와 산초의 산업적 활용 가능성: 고당으로 유도된 뇌신경세포 독성에 대한 추출물의 보호 효과)

  • Han, Hye Ju;Park, Seon Kyeong;Kim, Min Ji;An, Jun Woo;Lee, Se Jin;Kang, Jin Yong;Kim, Jong Min;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.274-283
    • /
    • 2020
  • This study focused on the in vitro investigation of antioxidant and anti-diabetic activities, along with neuroprotection against high glucose-induced cytotoxicity, in order to evaluate the physiological effects of Zanthoxylum piperitum and Zanthoxylum schinifolium. The highest total phenolic content was measured in the 40% ethanolic extracts of Zanthoxylum piperitum (EZP) and Zanthoxylum schinifolium (EZS). The in vitro EZP antioxidant activity showed a relatively higher ABTS/DPPH radical scavenging activity and malondialdehyde inhibitory effect than that of EZS. The EZP inhibited carbohydrate hydrolysis (α-glucosidase and α-amylase) more efficiently than EZS in anti-diabetic tests. However, EZS showed a more efficient inhibition of advanced glycation end-products formation than EZP. In addition, both EZP and EZS effectively protected human-derived neuronal cells from high glucose-induced cytotoxicity. Finally, the physiological compounds were analyzed using UPLC IMS-QTOF/MSE, and the main EZP (quercetin-3-O-glucoside and 3-caffeoylquinic acid) and EZS (5-caffeoylquinic acid) compounds were identified as phenolic compounds.

Protective effect of ethyl acetate fraction from Actinidia arguta sprout against high glucose-induced in vitro neurotoxicity (포도당으로 유도된 in vitro 뇌신경세포 독성에 대한 다래 순 아세트산에틸 분획물의 보호 효과)

  • Yoo, Seul Ki;Park, Seon Kyeong;Kim, Jong Min;Kang, Jin Yong;Park, Su Bin;Han, Hye Ju;Kim, Chul-Wo;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.517-527
    • /
    • 2018
  • The current study investigated in vitro anti-diabetic and neuroprotective effects of the ethyl acetate fraction in Actinidia arguta sprouts (EFAS), on $H_2O_2$ and high glucose-induced cytotoxicity in human neuroblastoma MC-IXC cells. EFAS had high total phenolic and total flavonoid contents. An assessment of 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity of EFAS, as well as its potential for inhibiting malondialdehyde production, indicated that EFAS may possess significant antioxidant properties. EFAS exerted inhibitory effects on ${\alpha}-glucosidase$ via glycemic regulation which forms advanced glycation end products. In addition, EFAS exhibited significant acetylcholinesterase inhibitory effects. Moreover, EFAS displayed protective effects against $H_2O_2$ and high glucose-induced cell death, and inhibited the generation of reactive oxygen species in MC-IXC cells. Finally, the main physiological compound of EFAS was identified via high performance liquid chromatography as a rutin.

Protective effect of matcha green tea (Camellia sinensis) extract on high glucose- and oleic acid-induced hepatic inflammatory effect (고당 및 올레산으로 유도된 간세포에서의 염증반응에 대한 말차(Camellia sinensis) 추출물의 보호효과)

  • Kim, Jong Min;Lee, Uk;Kang, Jin Yong;Park, Seon Kyeong;Shin, Eun Jin;Moon, Jong Hyun;Kim, Min Ji;Lee, Hyo Lim;Kim, Gil Han;Jeong, Hye Rin;Park, Hyo Won;Kim, Jong Cheol;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.267-277
    • /
    • 2021
  • To evaluate hepatoprotective effects, the antioxidant capacities of matcha green tea extract (Camellia sinenesis) were compared to those of green leaf tea and the anti-inflammatory activities in HepG2 cells were investigated. Evaluation of the total phenolic and total flavonoid content, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, and inhibitory effect on lipid peroxidation indicated that the aqueous extract of matcha green tea presented significant catechin content and antioxidant capacity compared to those of green leaf tea. In addition, the extract had considerable inhibitory effects on α-glucosidase, α-amylase, and advanced glycation end-products. The matcha green tea extract significantly increased cell viability and reduced reactive oxygen species in H2O2- and high-glucose-treated HepG2 cells. Furthermore, in response to oleic acid-induced HepG2 cell injury, treatment with matcha green tea aqueous extract inhibited lipid accumulation and regulated the expression of inflammatory proteins such as p-JNK, p-Akt, p-GSK-3β, caspase-3, COX-2, iNOS, and TNF-α. Matcha green tea could be used as a functional material to ameliorate hepatic lipid accumulation and inflammation.