DOI QR코드

DOI QR Code

Anti-diabetic and Anti-oxidative Activities of Extracts from Crataegus pinnatifida

산사 추출물의 항산화 및 항당뇨 활성

  • Nam, Sang-Myeoung (Dept. of Food Techonology and Services, Eulji University) ;
  • Kang, Il-Jun (Dept. of Food Science and Nutrition, Hallym University) ;
  • Shin, Mee-Hye (Dept. of Food Techonology and Services, Eulji University)
  • 남상명 (을지대학교 식품산업외식학과) ;
  • 강일준 (한림대학교 식품영양학과) ;
  • 신미혜 (을지대학교 식품산업외식학과)
  • Received : 2015.02.25
  • Accepted : 2015.04.17
  • Published : 2015.04.30

Abstract

This study was performed to investigate the antidiabetic and antioxidant activities of Crataegus pinnatifida which was extracted with water and different concentrations of EtOH (0~100%). The extraction yield of 70% EtOH (33.16%) was higher than that of 50% EtOH (27.79%), water (21.71%), 30% EtOH (21.88%) and 100% EtOH (19.03%). Total polyphenol contents of 50% EtOH extract from C. pinnatifida were the highest. DPPH and ABTS radical scavenging activities were $80.79{\pm}0.83%$ and $34.92{\pm}0.97%$ in 50% EtOH extract, respectively, which were higher than those of other extracts. The inhibitory activities of 50% ethanol extract from C. pinnatifida against advanced glycation end products (AGEs) formation and ${\alpha}$-glucosidase were determined to be $27.09{\pm}2.27%$ and $58.87{\pm}0.70%$, respectively. The inhibitory activity of water extract from C. pinnatifida against aldose reductase was higher ($30.68{\pm}1.41%$) than those of other extracts. Overall, 50% EtOH extract from C. pinnatifida showed the highest antidiabetic and antioxidant effects. These results suggest that 50% ethanol extracts from C. pinnatifida have potential as a useful ingredient with antidiabetic and antioxidant effects.

장미과에 속한 낙엽교목인 산사나무의 열매인 산사의 항산화 및 항당뇨 관련 활성을 검토하고, 추출 용매에 따른 차이를 비교하기 위하여 총 페놀 함량, DPPH 라디칼 소거능, ABTS 라디칼 소거능, 최종당화산물 억제능, ${\alpha}$-glucosidase 억제능, aldose reductase 억제능을 측정하였다. 수율은 70% 에탄올 추출물이 33.16%로 가장 높았고, 50% 에탄올 추출물이 27.79%로 그 다음 높았으며, 물, 30% 에탄올, 100% 에탄올은 각각 21.71%, 21.88%, 19.03%를 나타내었다. 총 페놀함량은 50% 에탄올 추출물이 $41.83{\pm}0.07mg$ GAE/g으로 가장 높았고, DPPH와 ABTS 라디칼 소거능도 50% 에탄올 추출물이 각각 $80.79{\pm}0.83%$, $34.92{\pm}0.97%$로 가장 높았다. 최종 당화산물 억제능과 ${\alpha}$-glucosidase 억제능도 50% 에탄올 추출물이 $27.09{\pm}2.27%$$58.87{\pm}0.70%$로 가장 높게 나타난 반면에 AR은 물 추출물이 $30.68{\pm}1.41%$로 가장 높게 나타나면서 상이한 경향을 보였다. 이상의 결과를 종합해 보면, 알코올 농도에 따른 산사의 추출물 중 50% 에탄올 추출물이 천연 항산화제로서 가치가 있으며, 당뇨병 예방을 위한 천연물로서의 가능성도 보였으나 당뇨병 합병증 치료에 대한 효과는 미흡한 것으로 나타났다. 향후 좀 더 다양한 fraction에서의 연구와 in vivo 시험 등을 통한 추가적인 연구가 필요할 것으로 사료된다.

Keywords

References

  1. Ahmed N (2005) Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res Clin Pract 67: 3-21. https://doi.org/10.1016/j.diabres.2004.09.004
  2. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  3. Bondet V, Brand-Williams W, Berset C (1997) Kinetics and mechanisms of antioxident activity using the DPPH free radical method. LWT-Food Sci Technol 30: 609-615. https://doi.org/10.1006/fstl.1997.0240
  4. Choi GY, Han GJ, Ha SC (2011) ${\alpha}$-Glucosidase inhibitory substances exploration isolated from the herb extract. Korean J Food Prserv 18: 620-625. https://doi.org/10.11002/kjfp.2011.18.4.620
  5. Duan Y, Kim MA, Seong JH, Lee YG, Kim DS, Chung HS, Kim HS (2014) Impacts of various solvent extracts from wild haw(Crataegus pinnatifida Bunge) pulpy on the antioxidative activities. J East Asian Soc Dietary Life 24: 392-399.
  6. Fellegrini N, Ke R, Yang M, Rice-Evans C (1999) Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2'-azinobis (3-ethylenebenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Methods Enzymol 299: 379-389. https://doi.org/10.1016/S0076-6879(99)99037-7
  7. Folin O, Denis W (1912) On phosphotungastic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243.
  8. Gabbay KH, O'Sullivan JB (1968) The sorbitol pathway in diabetes and galactosemia: Enzyme and sobstrate localization and changes in kidney. Diabetes 17: 0012-1797.
  9. Gua J, Jin YS, Han W, Shim TH, Sa JH, Wang MH (2006) Studies for component analysis, antioxidative activity and ${\alpha}$-glucosidase inhibitory activity from Equisetum arvense. J Korean Soc Appl Biol Chem 49: 77-81.
  10. Hong SS, Hwang JS, Lee SA, Han XH, Hwang JS, Lee KS (2002) Inhibitors of monoamine oxidase activity from the fruits of Crataegus ponnatifida Bunge. Kor J Pharmacogn 33: 285-290.
  11. Hutton JC, Schofield PH, Williams JF, Regtop HL, Hollows FC (1976) The effect of an unsaturated-fat diet on cataract formation in streptozotocin-induced diaberic rats. Br J Nutr 36: 161-177. https://doi.org/10.1079/BJN19760069
  12. Jang DS, Lee YM, Kim YS, Kim JS (2006) Screening of Korean traditional herbal medicines with inhibitory activity on advanced glycation end products (AGEs) formation. Kor J Pharmacogn 37:48-52.
  13. Jung MJ, Heo SI, Wang MH (2008) Rat lens aldose reductase inhibitory of Taraxacum mogolicum and two Cirsium species. J Appl Biol Chem 51: 302-306. https://doi.org/10.3839/jabc.2008.047
  14. Kang YH, Park YK, Oh SR, Moon KD (1995) Studies on the physiological functionality of pine needle and mugwort extracts. Korean J Food Sci Technol 27: 978-984.
  15. Kim HS, Kim MA, Yishan Duan, Jang SH, Cho HJ , Ryu JY, Kim SW (2014) Influences of wild Haw (Crataegus pinnatifida Bunge) on lowering bun and creatinine concentrations in dyslipidemia. Journal of Environmental Science International 23: 1029-1035. https://doi.org/10.5322/JESI.2014.23.6.1029
  16. Kim HS, Kim MA, Yishan Duan, Jang SH, Lee WK, Ryu JY (2014) Effects of Haw (Crataegus pinnatifida Bunge) on relaxation in the lipid components and blood glucose of lipid metabolism syndrome. Journal of Environmental Science International 23: 1021-1027. https://doi.org/10.5322/JESI.2014.23.6.1021
  17. Kim JH, Kim M, Cho YJ (2007) Isolation and identification of inhibitory compound from Crataegi fructus on ${\alpha}$-amylase and ${\alpha}$-glucosidase. Korean Soc Appl Biol Chem 50: 204-209.
  18. Kim MA, Duan Y, Seong JH, Chung HS, Kim HS (2014) Antioxidative activity of feral haw (Crataegus pinnatifida Bunge) seed extracts using various solvents. Korean J Food Cook Sci 30: 33-40. https://doi.org/10.9724/kfcs.2014.30.1.033
  19. Kim MJ, Chu WM, Park EJ (2012) Antioxidant and antigenotoxic effects of shiitake mushrooms affected by different drying methods. J Korean Soc Food Sci Nutr 41: 1041-1048. https://doi.org/10.3746/jkfn.2012.41.8.1041
  20. Kim SH, Hwang SY, Park OS, Kim MK, Chung YJ (2005) Effect of Pinus densiflora extract on blood glucose level, OGTT and biochemical parameters in streptozotocin induced diabetic rats. J Korean Soc Food Sci Nutr 34: 973-979. https://doi.org/10.3746/jkfn.2005.34.7.973
  21. Lee JJ, Lee JS, Choi YIl, Lee HJ (2013) Antioxidant activity of Sansa (Crataegi fructus) and its application to the pork tteokgalbi. Korean J Food Sci An 33: 531-541 https://doi.org/10.5851/kosfa.2013.33.4.531
  22. Lee JW, Do JH, Lee SK, Yang JW (2000) Determination of total phenolic compounds from Korean red ginseng, and their extraction conditions. J Ginseng Res 24: 64-67.
  23. Lee SM, You YH, Kim KM, Park JJ (2012) Antioxidant activities of native Gwangyang Rubus coreanus Miq. J Korean Soc Food Sci Nutr 41: 327-332. https://doi.org/10.3746/jkfn.2012.41.3.327
  24. Lee YM, Kim YS, Kim JM, Jang DS, Kim JH, Yoo JL, Kim JS (2008) Screening of Korean herbal medicines with inhibitory activity on advanced glycation end products (AGEs) formation (II). Kor J Pharmacogn 39: 223-227.
  25. Lee, YS, Choi, JB, Joo, EY, Kim, NW (2007) Antioxidative activities and tyrosinase inhibition of water extracts from Ailanthus altissima. J Korean Soc Food Sci Nutr 36: 1113-1119. https://doi.org/10.3746/jkfn.2007.36.9.1113
  26. McPherson JD, Shilton BH, Walton DJ (1988) Role of fructose in glycation and cross-linking of proteins. Biochemistry 27: 1901-1907. https://doi.org/10.1021/bi00406a016
  27. Park EJ, Ahn JJ, Kwon JH (2013) Effect of reflux conditions on extraction properties and antioxidant activity of freeze dried-Schisandra chinensis. Korean J Food Sci Technol 45: 550-556. https://doi.org/10.9721/KJFST.2013.45.5.550
  28. Park HM, Hong JH (2014) Effect of extraction methods on antioxidant activities of Mori ramulus. J Korean Soc Food Sci Nutr 43: 1709-1715. https://doi.org/10.3746/jkfn.2014.43.11.1709
  29. Park SJ, Han KS, Yoo SM (2012) Nutritional characteristics and screening of biological activity of Crataegi fructus. Korean J Food & Nutr 25: 413-418. https://doi.org/10.9799/ksfan.2012.25.3.413
  30. Re R, Pellegrini N, Protegente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radicals Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  31. Sato T, Iwaki M, Shimogaito N, Wu X, Yamagishi S, Takeuchi M (2006) TAGE(toxic AGEs) theory in diabetic complications. Curr Mol Med 6: 351-358. https://doi.org/10.2174/156652406776894536
  32. Seo SJ, Kim NW (2014) Antioxidant activities of extracts from leaves and stems of Achyranthes japonica. J Korean Soc Food Sci Nutr 43: 972-979. https://doi.org/10.3746/jkfn.2014.43.7.972
  33. Van de Laar FA, Lucassen PL, Akkermans RP, Van de Lisdonk EH, Rutten GE, van Weel C (2005) ${\alpha}$-Glucosidase inhibitors for patients with type 2 diabetes: Results from a Cochrane systematic review and meta-analysis. Diabetes Care 28: 154-163. https://doi.org/10.2337/diacare.28.1.154
  34. Wolff SP, Jiang ZY, Hunt JV (1991) Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic Biol Med 10: 339-352. https://doi.org/10.1016/0891-5849(91)90040-A

Cited by

  1. 수확시기별 제주산 영귤의 항산화 및 항당뇨 활성 비교 vol.25, pp.11, 2015, https://doi.org/10.5352/jls.2015.25.11.1311
  2. 건조 방법에 따른 산사과 추출물의 항산화 및 생리활성 vol.23, pp.2, 2015, https://doi.org/10.11002/kjfp.2016.23.2.246
  3. 반응표면 분석법을 이용한 치아씨 항산화 활성 추출의 최적화 조건 vol.29, pp.2, 2015, https://doi.org/10.9799/ksfan.2016.29.2.228
  4. 모링가 잎 추출물의 항당뇨, 알코올 대사 및 간 보호 활성 vol.45, pp.6, 2015, https://doi.org/10.3746/jkfn.2016.45.6.819
  5. 레몬 머틀 잎 추출물의 Hep G2 세포에서의 간 보호 효과 및 알코올대사 효소활성 vol.27, pp.11, 2015, https://doi.org/10.5352/jls.2017.27.11.1262
  6. 좁은잎산사나무 열매 추출물의 효능에 관한 연구 vol.31, pp.6, 2015, https://doi.org/10.9799/ksfan.2018.31.6.775
  7. Investigating the effect of Crataegus pinnatifida, a functional food, on cognition and memory deficit vol.26, pp.2, 2015, https://doi.org/10.11002/kjfp.2019.26.2.238
  8. 국내산 초피와 산초의 산업적 활용 가능성: 고당으로 유도된 뇌신경세포 독성에 대한 추출물의 보호 효과 vol.52, pp.3, 2015, https://doi.org/10.9721/kjfst.2020.52.3.274
  9. Antioxidant and Anti-Diabetic Effects of Agastache rugosa Extract vol.30, pp.4, 2015, https://doi.org/10.17495/easdl.2020.8.30.4.297
  10. 비타민나무(Sea Buckthorn, Hippophae rhamnoides) 잎 에탄올 농도별 추출물의 항산화활성 비교 vol.53, pp.1, 2015, https://doi.org/10.9721/kjfst.2021.53.1.55