Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0052

Different Functional and Structural Characteristics between ApoA-I and ApoA-4 in Lipid-Free and Reconstituted HDL State: ApoA-4 Showed Less Anti-Atherogenic Activity  

Yoo, Jeong-Ah (School of Biotechnology, Yeungnam University)
Lee, Eun-Young (School of Biotechnology, Yeungnam University)
Park, Ji Yoon (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Lee, Seung-Taek (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Ham, Sihyun (Department of Chemistry, Sookmyung Women's University)
Cho, Kyung-Hyun (School of Biotechnology, Yeungnam University)
Abstract
Apolipoprotein A-I and A-IV are protein constituents of high-density lipoproteins although their functional difference in lipoprotein metabolism is still unclear. To compare anti-atherogenic properties between apoA-I and apoA-4, we characterized both proteins in lipid-free and lipidbound state. In lipid-free state, apoA4 showed two distinct bands, around 78 and $67{\AA}$ on native gel electrophoresis, while apoA-I showed scattered band pattern less than $71{\AA}$. In reconstituted HDL (rHDL) state, apoA-4 showed three major bands around $101{\AA}$ and $113{\AA}$, while apoA-I-rHDL showed almost single band around $98{\AA}$ size. Lipid-free apoA-I showed 2.9-fold higher phospholipid binding ability than apoA-4. In lipid-free state, $BS_3$-crosslinking revealed that apoA-4 showed less multimerization tendency upto dimer, while apoA-I showed pentamerization. In rHDL state (95:1), apoA-4 was existed as dimer as like as apoA-I. With higher phospholipid content (255:1), five apoA-I and three apoA-4 were required to the bigger rHDL formation. Regardless of particle size, apoA-I-rHDL showed superior LCAT activation ability than apoA-4-rHDL. Uptake of acetylated LDL was inhibited by apoA-I in both lipid-free and lipid-bound state, while apoA-4 inhibited it only lipid-free state. ApoA-4 showed less anti-atherogenic activity with more sensitivity to glycation. In conclusion, apoA-4 showed inferior physiological functions in lipid-bound state, compared with those of apoA-I, to induce more pro-atherosclerotic properties.
Keywords
apolipoprotein A-I; apolipoprotein A-4; fructosylation; recombinant high-density lipoprotein;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Li, X., Xu, M., Wang, F., Kohan, A.B., Haas, M.K., Yang, Q., Lou, D., Obici, S., Davidson, W.S., and Tso, P. (2014). Apolipoprotein A-IV Reduces Hepatic Gluconeogenesis through the Nuclear Receptor NR1D1. J. Biol. Chem. 289, 2396-2404.   DOI   ScienceOn
2 Mahley, R.W., Innerarity, T.L., Rall, S.C., and Weisgraber, K.H. (1984). Plasma lipoproteins: apolipoprotein structure and function. J. Lipid Res. 25, 1277-1294.
3 Main, L.A., Ohnishi, T., and Yokoyama, S. (1996). Activation of human plasma cholesteryl ester transfer protein by human apolipoprotein A-IV. Biochim. Biophys. Acta 1300, 17-24.   DOI   ScienceOn
4 Markwell, M.A., Haas, S.M., Bieber, L.L., and Tolbert, N.E. (1978). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87, 206-210.   DOI   ScienceOn
5 Matz, C.E., and Jonas, A. (1982). Micellar complexes of human apolipoprotein A-I with phosphatidylcholines and cholesterol prepared from cholate-lipid dispersions. J. Biol. Chem. 257, 4535-4540.
6 McPherson, J.D., Shilton, B.H., and Walton, D.J. (1988). Role of fructose in glycation and cross-linking of proteins. Biochemistry 27, 1901-1907.   DOI   ScienceOn
7 Park, K.H., Jang, W., Kim, K.Y., Kim, J.R., and Cho, K.H. (2010). Fructated apolipoprotein A-I showed severe structural modifycation and loss of beneficial functions in lipid-free and lipid-bound state with acceleration of atherosclerosis and senescence. Biochem. Biophys. Res. Commun. 392, 295-300.   DOI   ScienceOn
8 Park, J.Y., Park, J.H., Jang, W., Hwang, I.K., Kim, I.J., Kim, H.J., Cho, K.H., and Lee, S.T. (2012). Apolipoprotein A-IV is a novel substrate for matrix metalloproteinases. J. Biochem. 151, 291-298.   DOI   ScienceOn
9 Park, K.H., Kim, J.M., and Cho, K.H. (2014). Elaidic acid (EA) generates dysfunctional high-density lipoproteins and consumption of EA exacerbates hyperlipidemia and fatty liver change in zebrafish. Mol. Nutr. Food Res. 58, 1537-1545.   DOI   ScienceOn
10 Pownall, H.J., Massey, J.B., Kusserow, S.K., and Gotto, A.M. (1978). Kinetics of lipid-protein interactions: interaction of apolipoprotein A-I from human plasma high density lipoproteins with phosphatidylcholines. Biochemistry 17, 1183-1188.   DOI   ScienceOn
11 Pearson, K., Saito, H., Woods, S.C., Lund-Katz, S., Tso, P., Phillips, M.C., and Davidson, W.S. (2004). Structure of human apolipoprotein A-IV: a distinct domain architecture among exchangeable apolipoproteins with potential functional implications. Biochemisty 43, 10719-10729.   DOI   ScienceOn
12 Qin, X., Swertfeger, D.K., Zheng, S., Hui, D.Y., and Tso, P. (1998). Apolipoprotein AIV: a potent endogenous inhibitor of lipid oxidation. Am. J. Physiol. 274, H1836-H1840
13 Staros, J.V. (1982). N-hydroxysulfosuccinimide active esters: bis(Nhydroxysulfosuccinimide) esters of two dicarboxylic acids are hydrophilic, membrane-impermeant, protein cross-linkers. Biochemistry 21, 3950-3955.   DOI   ScienceOn
14 Steinmetz, A., and Utermann, G. (1985). Activation of lecithin: cholesterol acyltransferase by human apolipoprotein A-I. J. Biol. Chem. 260, 2258-2264.
15 Tubb, M.R., Silva, R.A., Fang, J., Tso, P., and Davidson, W.S. (2008). A three-dimensional homology model of lipid-free apolipoprotein A-IV using cross-linking and mass spectrometry. J. Biol. Chem. 283, 17314-17323.   DOI   ScienceOn
16 Tubb, M.R., Smith, L.E., and Davidson, W.S. (2009). Purification of recombinant apolipoproteins A-I and A-IV and efficient affinity tag cleavage by tobacco etch virus protease. J. Lipid Res. 50, 1497-1504.   DOI   ScienceOn
17 Boguski, M.S., Elshourbagy, N., Taylor, J.M., and Gordon, J.I. (1984). Rat apolipoprotein A-IV contains 13 tandem repetitions of a 22-amino acid segment with amphipathic helical potential. Proc. Natl. Acad. Sci. USA 81, 5021-5025.   DOI
18 VerHague, M.A., Cheng, D., Weinberg, R.B., and Shelness, G.S. (2013). Apolipoprotein A-IV expression in mouse liver enhances triglyceride secretion and reduces hepatic lipid content by promoting very low density lipoprotein particle expansion. Arterioscler. Thromb. Vasc. Biol. 33, 2501-2508.   DOI   ScienceOn
19 Weinberg, R.B. (2002). Apolipoprotein A-IV polymorphisms and diet-gene interactions. Curr. Opin. Lipidol. 13, 125-134.   DOI   ScienceOn
20 Beisiegel, U., and Utermann, G. (1979). An apolipoprotein homolog of rat apolipoprotein A-IV in human plasma. Isolation and partial characterization. Eur. J. Biochem. 93, 601-608   DOI   ScienceOn
21 Brouillette, C.G., Anantharamaiah, G.M., Engler, J.A., and Borhani, D.W. (2001). Structural models of human apolipoprotein A-I: a critical analysis and review. Biochim. Biophys. Acta. 1531, 40-46.
22 Cho, K.H. (2011). Enhanced delivery of rapamycin by V156K-apoAI high-density lipoprotein inhibits cellular proatherogenic effects and senescence and promotes tissue regeneration. J. Gerontol. A. Biol. Sci. Med. Sci. 66, 1274-1285.
23 Chen, P.S., Toribara, T.Y., and Warner, H. (1956). Microdetermination of phosphorus. Anal .Chem. 28, 1756-1758.   DOI
24 Chen, Y.H., Yang, J.T., and Martinez, H.M. (1972). Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry 11, 4120-4131.   DOI   ScienceOn
25 Cho, K.H. (2009). Biomedicinal implications of high-density lipoprotein: its composition, structure, functions, and clinical applications. BMB Rep. 42, 393-400.   DOI   ScienceOn
26 Cho, K.H., Park, S.H., Han, J.M., Kim, H.C., Choi, Y.K., and Choi, I. (2006). ApoA-I mutants V156K and R173C promote antiinflammatory function and antioxidant activities. Eur. J. Clin. Invest. 36, 875-882.   DOI   ScienceOn
27 Davidson, W.S., Hazlett, T., Mantulin, W.W., and Jonas, A. (1996). The role of apolipoprotein A-I domains in lipid binding. Proc. Natl. Acad. Sci. USA 93, 13605-13610.   DOI   ScienceOn
28 Ezeh, B., Haiman, M., Alber, H.F., Kunz, B., Paulweber, B., Lingenhel, A., Kraft, H.G., Weidinger, F., Pachinger, O., Dieplinger, H., et al. (2003). Plasma distribution of apoA-IV in patients with coronary artery disease and healthy controls. J. Lipid Res. 44, 1523-1529.   DOI   ScienceOn
29 Ferretti, G., Bacchetti, T., Bicchiega, V., and Curatola, G. (2002). Effect of human Apo AIV against lipid peroxidation of very low density lipoproteins. Chem. Phys. Lipids 114, 45-54.   DOI   ScienceOn
30 Fraenkal-Conrat, H. (1957). Methods for investigating essential groups for enzyme activity, Meth. Enzymol. 4, 247-269.   DOI
31 Frank, P.G., and Marcel, Y.L. (2000). Apolipoprotein A-I: structurefunction relationships. J. Lipid Res. 41, 853-872.
32 Goldberg, I.J., Scheraldi, C.A., Yacoub, L.K., Saxena, U., and Bisgaier, C.L. (1990). Lipoprotein ApoC-II activation of lipoprotein lipase. Modulation by apolipoprotein A-IV. J. Biol. Chem. 265, 4266-4272.
33 Gomaraschi, M., Putt, W.E., Pozzi, S., Iametti, S., Barbiroli, A., Bonomi, F., Favari, E., Bernini, F., Franceschini, G., Talmud, P.J., et al. (2010). Structure and function of the apoA-IV T347S and Q360H common variants. Biochem. Biophys. Res. Commun. 393, 126-130   DOI   ScienceOn
34 Han, J.M., Jeong, T.S., Lee, W.S., Choi, I., and Cho, K.H. (2005). Structural and functional properties of V156K and A158E mutants of apolipoprotein A-I in the lipid-free and lipid-bound states. J. Lipid Res. 46, 589-596.   DOI
35 Havel, R.J., Eder, H.A., and Bragdon, J.H. (1955). The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 34, 1345-1353.   DOI   ScienceOn
36 Heider, J.G., and Boyett, R.L. (1978). The picomole determination of free and total cholesterol in cells in culture. J. Lipid Res. 19, 514-518.
37 Jonas, A. (1998). Regulation of lecithin cholesterol acyltransferase activity. Prog. Lipid Res. 37, 209-234.   DOI   ScienceOn
38 Kim, J.Y., Kim, H., Jung, B.J., Kim, N.R., Park, J.E., and Chung, D.K. (2013). Lipoteichoic acid isolated from Lactobacillus plantarum suppresses LPS-mediated atherosclerotic plaque inflammation. Mol. Cells 35, 115-124.   DOI