• Title/Summary/Keyword: anti-diabetic activities

Search Result 223, Processing Time 0.032 seconds

Korean Red Ginseng Tonic Extends Lifespan in D. melanogaster

  • Kim, Man Su
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.241-245
    • /
    • 2013
  • Aging is the single most important risk factor that increases susceptibility to many forms of diseases. As such, much effort has been put forward to elucidate the mechanisms behind the processes of aging and to discover novel compounds that retain anti-aging activities. Korean red ginseng has been used for a variety of medical purposes in eastern countries for several thousands of years. It has been shown that Korean red ginseng affects a number of biological activities including, but not limited to, anti-inflammatory, anti-oxidative and anti-diabetic pathways. However, few studies have been performed to evaluate its anti-aging effects with an in vivo system. Here Drosophila melanogaster as an in vivo model organism demonstrates that Korean red ginseng tonic extends lifespan, increases resistance to starvation stress and prevents weight gain. This data suggest that Korean red ginseng may regulate organisms' metabolism in favor of extending lifespan.

Dietary Nigella sativa and Peganum harmala Oils Reverses Hyperglycaemia, Hepatotoxicity, and Metabolism in Rats

  • Hamden, Khaled;Carreau, Serge;Jamoussi, Kamel;Ayadi, Fatma;Garmazi, Fadhel;Elfeki, Abdelfattah
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.739-744
    • /
    • 2009
  • This study aims to evaluate the therapeutic action of administration of Nigella sativa (NS) and Peganum harmala (PH) oils in diabetes and hepatic toxicity. Results show that treatment of diabetic rats with NS oil or PH oil ameliorate hyperglycaemia induced stress oxidative and hepatic dysfunction in diabetic rats. Administration of NS or PH oil to diabetic rats caused an anti-diabetic and antioxidant activities by the decrease in plasmatic glucose level and increase in hepatic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities, reduced glutathione (GSH) and glycogen contents compared to untreated diabetic rats. Besides, NS and PH oils protect the hepatic function observed by decrease of triglyceride (TG), total cholesterol (TCh), and increase of high density lipoprotein-cholesterol (HDL-Ch) levels in serum and hepatic tissues. Moreover, a diminution in the bilirubin, transaminase glutanic pyruvic (TGP), and transaminase pyruvic oxaloacetic (TPO) contents in serum and the thiobarbituric acid-reactive substances levels (TBARs) in hepatic tissues are also detected.

Sargassum coreanum extract alleviates hyperglycemia and improves insulin resistance in db/db diabetic mice

  • Park, Mi Hwa;Nam, Young Hwa;Han, Ji-Sook
    • Nutrition Research and Practice
    • /
    • v.9 no.5
    • /
    • pp.472-479
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: The goal of this study was to examine the effect of Sargassum coreanum extract (SCE) on blood glucose concentration and insulin resistance in C57BL-KsJ-db/db mice. MATERIALS/METHODS: For 6 weeks, male C57BL/KsJ-db/db mice were administrated SCE (0.5%, w/w), and rosiglitazone (0.005%, w/w). RESULTS: A supplement of the SCE for 6 weeks induced a significant reduction in blood glucose and glycosylated hemoglobin concentrations, and it improved hyperinsulinemia compared to the diabetic control db/db mice. The glucokinase activity in the hepatic glucose metabolism increased in the SCE-supplemented db/db mice, while phosphoenolpyruvate carboxykinase and glucose-6-phosphatase activities in the SCE-supplemented db/db mice were significantly lower than those in the diabetic control db/db mice. The homeostatic index of insulin resistance was lower in the SCE-supplemented db/db mice than in the diabetic control db/db mice. CONCLUSIONS: These results suggest that a supplement of the SCE lowers the blood glucose concentration by altering the hepatic glucose metabolic enzyme activities and improves insulin resistance.

Comparison of Anti-Diabetic Activities by Extracts of Grape Cultivar (포도 품종별 추출물의 혈당 완화 활성 비교)

  • Kim, Min-A;Son, Hyeong-U;Yoon, Eun-Kyung;Choi, Yong-Hee;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.19 no.3
    • /
    • pp.400-405
    • /
    • 2012
  • To investigate the anti-diabetic activity of ethanol and aqueous peel and seed extracts obtained from three different grape species (Cambell Early, MBA, and Kyoho), alpha-glucosidase inhibitory activity was examined. All extracts showed anti-diabetic activity, especially aqueous extract exhibited inhibitory effect above 70%. Thus, we used aqueous extract to check the potential hypoglycemic effects in a streptozotocin (STZ)-induced diabetic mice model. The results showed that the blood glucose level of STZ-induced diabetic mice decreased drastically after 3 hr when the aqueous extract of Cambell Early seed was treated to the mice model. The aqueous extract of Kyoho seed lessened blood glucose level by 60%. Together, these data indicate that extracts of grape peel and seed (aqueous or ethanol) may have potential in improving hypoglycemic effects in the diabetic symptoms, suggesting that further investigation on biomarker expressions should be rewarding.

In vivo antioxidant, hypoglycemic, and anti-tumor activities of anthocyanin extracts from purple sweet potato

  • Zhao, Jin-Ge;Yan, Qian-Qian;Lu, Li-Zhen;Zhang, Yu-Qing
    • Nutrition Research and Practice
    • /
    • v.7 no.5
    • /
    • pp.359-365
    • /
    • 2013
  • Anthocyanin from purple sweet potato (PSP) extracted by microwave baking (MB) and acidified electrolyzed water (AEW) exhibited antioxidant activity. After further purification by macroporous AB-8 resin, the color value of PSP anthocyanin (PSPA) reached 30.15 with a total flavonoid concentration of 932.5 mg/g. The purified extracts had more potent antioxidant activities than the crude extracts. After continuously administering the PSP extracts to 12-mo-old mice for 1 mo, the anti-aging index of the experimental group was not significantly different from that of 5-mo-old mice. To a certain degree, PSPA was also effective for controlling plasma glucose levels in male Streptozocin (STZ)-treated diabetic mice. In addition, the extracts inhibited Sarcoma S180 cell growth in ICR mice. Mice consuming the PSP extracts formed significantly fewer and smaller sarcomas than mice consuming the control diets. The highest inhibition rate was 69.03%. These results suggest that anthocyanin extracts from PSP not only exert strong antioxidant effects in vitro, but also had anti-aging, anti-hyperglycemic, and anti-tumor activities.

Fermented Ginseng Attenuates Hepatic Lipid Accumulation and Hyperglycemia through AMPK Activation

  • Kim, Do-Yeon;Park, Jong-Seok;Yuan, Hai-Dan;Chung, Sung-Hyun
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.172-178
    • /
    • 2009
  • Fermented ginseng (FG) is an ethanol extract of ginseng radix processed with $\beta$-galactosidase. It was hypothesized that FG may exert anti-hyperlipidemic and anti-diabetic activities through modulating AMP-activated protein kinase (AMPK) in HepG2 human hepatoma cells. In this study, we showed that AMPK phosphorylation was stimulated by FG. These effects were abolished by pretreatment with an AMPK inhibitor, compound C. In addition, FG regulated the expression of genes associated with lipogenesis and lipolysis, thus causing suppression of hepatic triglyceride accumulation. In vivo study using db/db mice, FG reduced fasting plasma glucose, HbAlc, and insulin resistance index, when compared to diabetic control. FG also increased the phospho-AMPK and glucose transporter 4 (GLUT4) expressions in liver and skeletal muscle, respectively. In liver, expressions of lipogenic gene were decreased whereas expressions of lipolytic genes were induced, when compared to diabetic control. Taken together, we may suggest that FG ameliorates hyperglycemia and hyperlipidemia through activation of AMPK and could be developed as a health functional food or therapeutic agent for type 2 diabetic patients.

Biological Activities in the Leaf Extract of Lythrum salicaria L. (털부처꽃 잎 추출물의 생리활성탐색)

  • Kim, Hee-Yeon;Lim, Sang-Hyun;Park, Min-Hee;Park, Yu-Hwa;Ham, Hun-Ju;Lee, Ki-Yun;Park, Dong-Sik;Kim, Kyung-Hee;Kim, Song-Mun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.6
    • /
    • pp.409-415
    • /
    • 2010
  • In this study, the bioactivities of ethanol (EELS) and water extract (WELS) from the leaf of Lythrum salicaria L. were investigated. In the anti-cancer activity, the growths of both human prostate cancer (DU145) and human colonic carcinoma cell (HT29) were inhibited up 60% by adding 10 mg/$m{\ell}$ of EELS. Anti-inflammatory activity of EELS and WELS have been evaluated on lipopolysaccharide (LPS) induced release of nitric oxide (NO) by the macrophage RAW 264.7 cells. EELS and WELS inhibited inflammatory by 57.3 and 46.9% in 10 mg/$m{\ell}$, respectively. In the anti-oxidative activity, $IC_{50}$ of DPPH radical scavenging activity was respectively 60.71 and $92.90\;{\mu}g/m{\ell}$ by EELS and WELS. In the anti-diabetic activity, $IC_{50}$ of ${\alpha}$-amylase inhibitory activity of EELS and WELS were respectively 5,250 and $5,020\;{\mu}g/m{\ell}$. $IC_{50}$ of ${\alpha}$-glucosidase inhibitory activity was 7.96 and $68.41\;{\mu}g/m{\ell}$ by EELS and WELS. In the anti-obesity, $IC_{50}$ of lipase inhibitory activity was 880 and $9,840\;{\mu}g/m{\ell}$ by EELS and WELS. Finally, EELS and WELS exhibited anti-oxidative, anti-inflammatory, anti-diabetic activity and anti-obesity. It suggests that Lythrum salicaria L. could be potentially used as a resource of bioactive materials for health functional foods.

Anti-Diabetic Effects of an Ethanol Extract of Cassia Abbreviata Stem Bark on Diabetic Rats and Possible Mechanism of Its Action - Anti-diabetic Properties of Cassia abbreviata -

  • Bati, Keagile;Kwape, Tebogo Elvis;Chaturvedi, Padmaja
    • Journal of Pharmacopuncture
    • /
    • v.20 no.1
    • /
    • pp.45-51
    • /
    • 2017
  • Objectives: This study aimed to evaluate the hypoglycemic effects of an ethanol extract of Cassia abbreviata (ECA) bark and the possible mechanisms of its action in diabetic albino rats. Methods: ECA was prepared by soaking the powdered plant material in 70% ethanol. It was filtered and made solvent-free by evaporation on a rotary evaporator. Type 2 diabetes was induced in albino rats by injecting 35 mg/kg body weight (bw) of streptozotocin after having fed the rats a high-fat diet for 2 weeks. Diabetic rats were divided into ECA-150, ECA-300 and Metformin (MET)-180 groups, where the numbers are the doses in mg.kg.bw administered to the groups. Normal (NC) and diabetic (DC) controls were given distilled water. The animals had their fasting blood glucose levels and body weights determined every 7 days for 21 days. Oral glucose tolerance tests (OGTTs) were carried out in all animals at the beginning and the end of the experiment. Liver and kidney samples were harvested for glucose 6 phosphatase (G6Pase) and hexokinase activity analyses. Small intestines and diaphragms from normal rats were used for ${\alpha}-glucosidase$ and glucose uptake studies against the extract. Results: Two doses, 150 and 300 mg/kg bw, significantly reduced the fasting blood glucose levels in diabetic rats and helped them maintain normal body weights. The glucose level in DC rats significantly increased while their body weights decreased. The 150 mg/kg bw dose significantly increased hexokinase and decreased G6Pase activities in the liver and the kidneys. ECA inhibited ${\alpha}-glucosidase$ activity and promoted glucose uptake in the rats' hemi-diaphragms. Conclusion: This study revealed that ECA normalized blood glucose levels and body weights in type 2 diabetic rats. The normalization of the glucose levels may possibly be due to inhibition of ${\alpha}-glucosidase$, decreased G6Pase activity, increased hexokinase activity and improved glucose uptake by muscle tissues.

Phaleria macrocarpa Suppresses Oxidative Stress in Alloxan-induced Diabetic Rats by Enhancing Hepatic Antioxidant Enzyme Activity

  • Triastuti, Asih;Park, Hee-Juhn;Choi, Jong-Won
    • Natural Product Sciences
    • /
    • v.15 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • Oxidative stress is caused by an imbalance between the production of reactive oxygen and an ability of a biological system, to readily detoxify the reactive intermediates or easily repair the resulting damage. It has been suggested that developmental alloxan-induced liver damage is mediated through increases in oxidative stress. The anti-diabetic effect and antioxidant activity of Phaleria macrocarpa (PM) fractions were investigated in alloxan-induced diabetic rats. After two weeks administration of PM, the liver antioxidant enzyme and hyperglycemic state were evaluated. The results showed that oral administration of PM treatments reduced blood glucose levels in diabetic rats by oral administration (P < 0.05). Serum glutamic-oxaloacetic transaminase (sGOT) and serum glutamic-pyruvate-transaminase (sGPT) were also diminished by PM supplementation. The superoxide dismutase (SOD), catalase (CAT) and glutathione-peroxidase (GPx) activities, and glutathione (GSH) level in the alloxan-induced diabetic rats were significantly decreased (P < 0.05) compared to those in the normal rats but were restored by PM treatments. PM fractions also repressed the level of malondialdehyde (MDA) in the liver. Glutathione reductase (GR), glutathione-S-transferase (GST) and $\gamma$-glutamylcysteine synthase (GCS) were also reduced in alloxan-induced diabetic rats. PM fractions could restore the GR and GST activities, but the GCS activity was not affected in rat livers. From the results of the present study, the diabetic effect of the butanol fraction of PM against alloxan-induced diabetic rats was concluded to be mediated either by preventing the decline of hepatic antioxidant status or due to its indirect radical scavenging capacity.

Anti-Diabetic Effect of Cotreatment with Quercetin and Resveratrol in Streptozotocin-Induced Diabetic Rats

  • Yang, Dong Kwon;Kang, Hyung-Sub
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.130-138
    • /
    • 2018
  • Quercetin and resveratrol are known to have beneficial effects on the diabetes and diabetic complication, however, the effects of combined treatment of these compounds on diabetes are not fully revealed. Therefore, the present study was designed to investigate the combined antidiabetic action of quercetin (QE) and resveratrol (RS) in streptozotocin (STZ)-induced diabetic rats. To test the effects of co-treated with these compounds on diabetes, serum glucose, insulin, lipid profiles, oxidative stress biomarkers, and ions were determined. Additionally, the activities of hepatic glucose metabolic enzymes and histological analyses of pancreatic tissues were evaluated. 50 male Sprague-Dawley rats were divided into five groups; normal control, 50 mg/kg STZ-induced diabetic, and three (30 mg/kg QE, 10 mg/kg RS, and combined) compound-treated diabetic groups. The elevated serum blood glucose levels, insulin levels, and dyslipidemia in diabetic rats were significantly improved by QE, RS, and combined treatments. Oxidative stress and tissue injury biomarkers were dramatically inhibited by these compounds. They also shown to improve the hematological parameters which were shown to the hyperlactatemia and ketoacidosis as main causes of diabetic complications. The compounds treatment maintained the activities of hepatic glucose metabolic enzymes and structure of pancreatic ${\beta}-cells$ from the diabetes, and it is noteworthy that cotreatment with QE and RS showed the most preventive effect on the diabetic rats. Therefore, our study suggests that cotreatment with QE and RS has beneficial effects against diabetes. We further suggest that cotreatment with QE and RS has the potential for use as an alternative therapeutic strategy for diabetes.