Phaleria macrocarpa Suppresses Oxidative Stress in Alloxan-induced Diabetic Rats by Enhancing Hepatic Antioxidant Enzyme Activity

  • Published : 2009.03.31

Abstract

Oxidative stress is caused by an imbalance between the production of reactive oxygen and an ability of a biological system, to readily detoxify the reactive intermediates or easily repair the resulting damage. It has been suggested that developmental alloxan-induced liver damage is mediated through increases in oxidative stress. The anti-diabetic effect and antioxidant activity of Phaleria macrocarpa (PM) fractions were investigated in alloxan-induced diabetic rats. After two weeks administration of PM, the liver antioxidant enzyme and hyperglycemic state were evaluated. The results showed that oral administration of PM treatments reduced blood glucose levels in diabetic rats by oral administration (P < 0.05). Serum glutamic-oxaloacetic transaminase (sGOT) and serum glutamic-pyruvate-transaminase (sGPT) were also diminished by PM supplementation. The superoxide dismutase (SOD), catalase (CAT) and glutathione-peroxidase (GPx) activities, and glutathione (GSH) level in the alloxan-induced diabetic rats were significantly decreased (P < 0.05) compared to those in the normal rats but were restored by PM treatments. PM fractions also repressed the level of malondialdehyde (MDA) in the liver. Glutathione reductase (GR), glutathione-S-transferase (GST) and $\gamma$-glutamylcysteine synthase (GCS) were also reduced in alloxan-induced diabetic rats. PM fractions could restore the GR and GST activities, but the GCS activity was not affected in rat livers. From the results of the present study, the diabetic effect of the butanol fraction of PM against alloxan-induced diabetic rats was concluded to be mediated either by preventing the decline of hepatic antioxidant status or due to its indirect radical scavenging capacity.

Keywords

References

  1. Aebi, H., Catalase. In "Methods of enzymatic analysis" Vergmeyer, M.U.,Academic Press, New York., 2, 673 (1974)
  2. Akkus, I., Kalak, S., Vural, H., Caglayan, O., Menekse, E., Can, G., andDurmus, B., Leukocyte lipid peroxidation, superoxide dismutase,glutathione peroxidase and serum and leukocyte vitamin C levels ofpatients with type II diabetes mellitus. Clin. Chim. Acta., 244, 221-227(1996) https://doi.org/10.1016/0009-8981(96)83566-2
  3. Baynes, J.W. and Thorpe, S.R., Role of oxidative stress in diabetesvascular complications: a new perspective of an old paradigm.Diabetes, 48, 1-9 (1999) https://doi.org/10.2337/diabetes.48.1.1
  4. Chaudhry, J., Ghoxh, N.N., Roy, K., and Chandra, R., Anti hyperglycemicaffect of a new thiazolidine analogue and its role in amelioratingoxidative stress in alloxan-induced dabetic rats. Life Sci., 80, 1135-1142 (2007) https://doi.org/10.1016/j.lfs.2006.12.004
  5. Ellman, G.L., Tissue sulfhydryl group. Arch. Biochem. Biophys., 237,1589-1595 (1959)
  6. Elsner, M., Tiedge, M., Guldbakke, B., Munday, R., and Lenzen, S.,Importance of the GLUT2 glucose transporter for pancreatic beta celltoxicity of alloxan. Diabetologia, 45, 1542-1549 (2002) https://doi.org/10.1007/s00125-002-0955-x
  7. Faried, A., Kurnia, D., Faried, L.S., Usman, N., Miyazaki, T., Kato, H.,and Kuwano, H., Anticancer effects of gallic acid isolated fromIndonesia herbal medicine, Phaleria macrocarpa (Scheff.) Boerl, onhuman cancer cell lines. Int. J. Oncol., 30, 605-613 (2007)
  8. Giardino, I., Edelstein, D., and Brownlee, M., BCL-2 expression orantioxidants prevent hyperglycemia-induced formation of intracellularadvanced glycation endproducts in bovine endothelial cells. J. Clin.Invest., 97, 1422-1428 (1996) https://doi.org/10.1172/JCI118563
  9. Gorus, F.K., Malaisse, W.J., and Pipeleers, D.G., Selective uptake ofalloxan by pancreatic B-cells. Biochem. J., 208, 513-515 (1982) https://doi.org/10.1042/bj2080513
  10. Habig, W.H., Pabst, M.J., and Jakoby, W.B., Glutathione s-transferase: thefirst enzymatic step in mercapturic acid formation. J. Biol. Chem.,249, 7130-7139 (1974)
  11. Harmanto, N., Conquering Disease in Unison with Mahkota Dewa, Ir.Harmanto (Ed.), p.14 PT Mahkota Dewa Indonesia, North Jakarta(2003)
  12. Johansen, J.S., Harris, A.K., Rychly, D.J., and Ergul. A., Oxidative stressand the use of antioxidants in diabetes: linking basic science to clinicalpractice. Cardiovasc. Diabetol., 4, 5 (2005) https://doi.org/10.1186/1475-2840-4-5
  13. Lenzen, S. and Panten, U., Alloxan. History and mechanism of action.Diabetologia, 31, 337-342 (1988) https://doi.org/10.1007/BF02341500
  14. Lowry, O., H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Proteinmeasurement with folin phenol reagent. J. Biol. Chem., 193, 265-275(1951)
  15. Mahboob, M., Rahman, M.F., and Grover, P., Serum lipid peroxidationand antioxidant enzyme levels in male and female diabetic patients.Singapore Med. J., 46, 322-324 (2005)
  16. Marklund S. and Marklund, G., Involvement of the superoxide anionradical in the autooxidation of pyrogallol and convenient assay forsuperoxide dismutase. Eur. J. Biochem., 47, 469-474 (1974) https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  17. Mitchell, J.R., Jollow, D.J., Potter, W.Z., Gillette, J.R., and Brodie, B.B.,Acetaminophen-induced hepatic necrosis IV. Protective role ofglutathione. J. Pharmacol. Exp. Ther., 187, 211-7 (1973)
  18. Mize, C.E. and Langdon, R.G., Hepatic glutathione reductase I.Purification and general kinetic properties. J. Biol. Chem., 237, 1962-1967 (1962)
  19. Ohkawa, H., Ohishi, N., and Yaki, K., Assay for lipid peroxide in animaltissues by thiobarbituric acid reaction. Anal. Biochem., 95, 351-358(1979) https://doi.org/10.1016/0003-2697(79)90738-3
  20. Oshimi, S., Zaima, K., Matsuno, Y., Hirasawa, Y., Iizuka, .T, Studiawan,H., Indrayanto, G., Zaini, N.C., and Morita, H., Studies on theconstituents from the fruits of Phaleria macrocarpa. Nat. Med(Tokyo)., 62, 207-210 (2008) https://doi.org/10.1007/s11418-007-0209-9
  21. Paglia, E.D., and Valentine, W.N., Studies on the quantitative andqualitayive charaterization of erythocytes glutathione peroxidase. J.Lab. Clin. Med., 70, 158-169 (1967)
  22. Reitman, S., and Frankel, S., A colorimetric method for the determinationof serum glutamic oxalacetic and glutamic pyruvic transaminases, Am.J. Clin. Pathol., 28, 56-63 (1957)
  23. Richman, P.G. and Meister, A., Regulation of γ-Glutamyl-CysteineSynthetase by nonallosteric feedback inhibition by glutathione, J. Biol.Chem., 40, 1422-1426 (1975)
  24. Robertson, R.P., Harmon, J., Tran, P.O., Tanaka, Y., and Takahashi, H.,Glucose toxicity in a-cells: type 2 diabetes, good radicals gone bad,and the glutathione connection. Diabetes, 52, 581-587 (2003) https://doi.org/10.2337/diabetes.52.3.581
  25. Saufi, A., von Heimendahl. C.B., Alfermann, A.W., and Fuss, E.,Stereochemistry of lignans in Phaleria macrocarpa (Scheff.) Boerl. Z.Naturforsch., 63, 13-16 (2008)
  26. Sugiwati, S., Kardono, L.B.S., and Bintang, M., Alpha-glucosidaseinhibitory activity and hypoglycemic effect of Phaleria macrocarpafruit pericarp extracts by oral administration to rats., J. Applied Sci., 6,2312-2316 (2006) https://doi.org/10.3923/jas.2006.2312.2316
  27. Szkudelski, T., The mechanism of alloxan and streptozotocin action in Bcells of the rat pancreas, Physiol. Res., 50, 536-546 (2001)
  28. Triastuti, A., Bachri, M.S., and Choi, J.W., Protective effect of butanolfraction of Phaleria macrocarpa on oxidative stress associated withatreptozotocin induced diabetic mice, International PharmaceuticalSymposium, Jejudo-Korea (2008)
  29. Triastuti, A., Tito, F. A., and Wibowo, A., Antiangiogenic effect of theethanolic extract from Phaleria macrocarpa Boerl. fruit on chickembryo chorio allantoic membrane (CAM) induced by bFGF,National Symposium in Medicinal Plants of Indonesia, Solo-Indonesia(2006)
  30. Turko, I.V., Marcondes, S., and Murad, F., Diabetes-associated nitration oftyrosine and activation of succinyl-CoA:3-oxoacid CoA transferase.Am. J. Physiol. Heart Circ. Physiol., 281, H2289-2294 (2001) https://doi.org/10.1152/ajpheart.2001.281.6.H2289
  31. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T,, Mazur, M., and Telser,J., Free radicals and antioxidants in normal physiological functionsand human disease. Int. J. Biochem. Cell Biol., 39, 44-84 (2007) https://doi.org/10.1016/j.biocel.2006.07.001
  32. Vincent, A.M., Russell, J.W., Low, P., and Feldman, E.L., Oxidative stressin the pathogenesis of diabetic neuropathy, Endocr. Rev., 25, 612-628(2004) https://doi.org/10.1210/er.2003-0019
  33. Vinik, A.I., and Vinik, E., Prevention of the complications of diabetes.Am. J. Manag. Care., 9, S63-80 (2003)
  34. Wells, B.G., Dipiro, J.T., Schwinghammer, T.L., and Hamilton, C.W., Pharmacotherapy Handbook, McGraw-Hill, pp. 170-181 (2003)
  35. West, I.C., Radicals and oxidative stress in diabetes. Diabet Med., 17,171-180 (2000) https://doi.org/10.1046/j.1464-5491.2000.00259.x
  36. Wild, S., Roglic, G., Green, S., Sicree, R., and King, H., Globalprevalence of diabetes, estimates for the year 2000 and projections for2030, Diabetes care, 27, 1047-1053 (2004) https://doi.org/10.2337/diacare.27.5.1047
  37. Winarto, W.P., Mahkota Dewa: Budidaya dan pemanfaatan Untuk Obat.Penebar Swadaya, Indonesia (2003)
  38. Wu, G., Fang Y.Z.,Yang, S., Lupton, J.R., and Turner, N.D., Glutathionemetabolism and its implications for health. J. Nutr., 134, 489-92(2004)
  39. Zhang, Y.B., Xu, X.J., and Liu, H.M., Chemical constituents fromMahkota Dewa, J. Asian Nat. Prod. Res., 8, 119-123 (2006) https://doi.org/10.1080/10286020500480472
  40. Yoshida, K., Hirokawa, J., Tagami, S., Kawakami, Y., Urata, Y., andKondo, T., Weakened cellular scavenging activity against oxidativestress in diabetes mellitus: regulation of glutathione synthesis andefflux. Diabetolgia, 38, 201-210 (1995) https://doi.org/10.1007/BF00400095
  41. Zysset, T. and Tlach C., Altered liver function in diabetes: modelexperiments with aminopyrine in the rat. J. Pharmacol. Exp. Ther.,240, 271-276 (1987)