Dietary Nigella sativa and Peganum harmala Oils Reverses Hyperglycaemia, Hepatotoxicity, and Metabolism in Rats

  • Published : 2009.06.30

Abstract

This study aims to evaluate the therapeutic action of administration of Nigella sativa (NS) and Peganum harmala (PH) oils in diabetes and hepatic toxicity. Results show that treatment of diabetic rats with NS oil or PH oil ameliorate hyperglycaemia induced stress oxidative and hepatic dysfunction in diabetic rats. Administration of NS or PH oil to diabetic rats caused an anti-diabetic and antioxidant activities by the decrease in plasmatic glucose level and increase in hepatic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities, reduced glutathione (GSH) and glycogen contents compared to untreated diabetic rats. Besides, NS and PH oils protect the hepatic function observed by decrease of triglyceride (TG), total cholesterol (TCh), and increase of high density lipoprotein-cholesterol (HDL-Ch) levels in serum and hepatic tissues. Moreover, a diminution in the bilirubin, transaminase glutanic pyruvic (TGP), and transaminase pyruvic oxaloacetic (TPO) contents in serum and the thiobarbituric acid-reactive substances levels (TBARs) in hepatic tissues are also detected.

Keywords

References

  1. Hamden K, Boujbiha MA, Masmoudi H, Makni-Ayadi F, Jamoussi K, Elfeki A. Combined vitamins (C&E) and insulin improve oxidative stress and pancreatic and hepatic injury in alloxan diabetic rats. Biomed. Pharmacother. 63: 95-99 (2009) https://doi.org/10.1016/j.biopha.2008.02.001
  2. Babu CK, Khanna SK, Das M. Antioxidant status of erythrocytes and their response to oxidative challenge in humans with argemone oil poisoning. Toxicol. Appl. Pharma. 230: 304-311 (2008) https://doi.org/10.1016/j.taap.2008.02.017
  3. An HJ, Rim HK, Lee JH, Seo MJ, Hong JW, Kim NH, Myung NY, Moon PD, Choi IY, Na HJ, Kim SJ, Park HS, Han JG, Um JY, Hong SH, Kim HM. Effect of chlorella vulgaris on immuneenhancement and cytokine production in vivo and in vitro. Food Sci. Biotechnol. 17: 953-958 (2008)
  4. Seong S-H, Ahn E-M, Sohn H-S, Baik S-H, Park H-W, Lee S-J, Cha Y-S. Genistein combined with exercise improves lipid profiles and leptin levels in C57BL/6J mice fed a high fat diet. Food Sci. Biotechnol. 16: 910-917 (2007)
  5. Fararh KM, Atoji Y, Shimizu Y, Sgiina T, Nikimi H, Takewaki T. Mechanisms of the hypoglycaemic and immunopotentiating effects of Nigella sativa L. oil in streptozotocin-induced diabetic hamsters. Res. Vet. Sci. 77: 123-129 (2004) https://doi.org/10.1016/j.rvsc.2004.03.002
  6. Fararh KM, Atoji Y, Shimizu Y, Takewaki T. Isulinotropic properties of Nigella sativa oil in streptozotocin plus nicotinamide diabetic hamster. Res. Vet. Sci. 73: 279-282 (2002) https://doi.org/10.1016/S0034-5288(02)00108-X
  7. Hamden K, Masmoudi H, Ellouz F, El Feki A, Carreau S. Protective effects of Peganum harmala extracts in thiourea induced diseases in adult male rat. J. Environ. Biol. 29: 73-77 (2008)
  8. Jung HA, Yoon NY, Bae HJ, Min BS, Choi JS. Inhibitory activities of the alkaloids from Coptidis rhizoma against aldose reductase. Arch. Pharm. Res. 31: 1405-1412 (2008) https://doi.org/10.1007/s12272-001-2124-z
  9. Salem ML. Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int. J. Immunopharmaco. 5: 1749-1770 (2005) https://doi.org/10.1016/j.intimp.2005.06.008
  10. Buyukozturk S, Gelincik A, Ozseker F, Gene S, Savran FO, Kiran B, Yillar G, Erden S, Ayden F, Colakoglu B, Dal M, Ozer H, Bilir A. Nigella sativa (black seed) oil does not affect the T-helper 1 and T-helper 2 type cytokine production from splenic mononuclear cells in allergen sensitized mice. J. Ethnopharmacol. 100: 295-298 (2005) https://doi.org/10.1016/j.jep.2005.03.007
  11. Bahekar RH, Jain MR, Jadav PA, Goel A, Patel DN, Prajapati VM, Gupta AA, Modi H, Patel PR. Synthesis of 3,8,9-trisubstituted-1,7,9-triaza-fluorene-6-carboxylic acid derivatives as a new class of insulin secretagogues. Bioorg. Med. Chem. 15: 5950-5964 (2007) https://doi.org/10.1016/j.bmc.2007.05.075
  12. Squires PE, Hills CE, Rogers GJ, Garland P, Farley SR, Morgan NG. The putative imidazoline receptor agonist, harmane, promotes intracellular calcium mobilisation in pancreatic $\beta$-cells. Eur. J. Pharmacol. 501: 31-39 (2004) https://doi.org/10.1016/j.ejphar.2004.08.018
  13. Efanov AM, Zaitsev SV, Mest HJ, Raap A, Appelskog IB, Larsson O, Berggren P-O, Efendic S. The novel imidazoline compound BL11282 potentiates glucose-induced insulin secretion in pancreatic β-cells in the absence of modulation of K(ATP) channel activity. Diabetes 50: 797- 802 (2001) https://doi.org/10.2337/diabetes.50.4.797
  14. Kelly DS. Modulation of human immune and inflammatory responses by dietary fatty acids. Nutrition 17: 669-673 (2001) https://doi.org/10.1016/S0899-9007(01)00576-7
  15. Stulnig TM. Immunomodulation by polyunsaturated fatty acids: Mechanisms and effects. Int. Arch. Allergy Imm. 132: 310-321 (2003) https://doi.org/10.1159/000074898
  16. Buege JA, Aust SD. Microsomal lipid peroxidation. Method Enzymol. 105: 302-310 (1984)
  17. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 469-474 (1975) https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  18. Pagila DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70: 158-169 (1967)
  19. Aebi H. Catalase in vitro. Method Enzymol. 105: 121-126 (1984) https://doi.org/10.1016/S0076-6879(84)05016-3
  20. Ellman GC. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82: 70-77 (1959) https://doi.org/10.1016/0003-9861(59)90090-6
  21. Ohinishi M, Morishita H, Iwahashi H, Toda S, Shirataki Y, Kimura M, Ryo Kido R. Inhibitory effects of chologenic acids on linoleic acid peroxidation and haemolysis. Phytochemistry 36: 579-583 (1994) https://doi.org/10.1016/S0031-9422(00)89778-2
  22. Hosseinzadeh H, Parvardeh S, Asl MN, Sadeghnia HR, Ziaee T. Effect of thymoquinone and Nigella sativa seeds oil on lipid peroxidation level during global cerebral ischemia-reperfusion injury in rat hippocampus. Phytomedicine 14: 621-627 (2007) https://doi.org/10.1016/j.phymed.2006.12.005
  23. Joo SS. Immunosuppressive properties of catfish bile from Silurus asotus: Inhibition of T cell activation in mouse splenocytes. Food Sci. Biotechnol. 17: 598-602 (2008)
  24. Lyu SY, Park WB. Th1/Th2 Cytokine modulation in human PBMC by Acanthopanax divaricatus var. albeofructus. Food Sci. Biotechnol. 17: 631-636 (2008)
  25. Im JH, Jin YR, Lee JJ, Yu JY, Han XH, Im SH, Hong JT, Yoo HS, Pyo MY, Yun YP. Antiplatelet activity of $\beta$-carboline alkaloids from Perganum harmala: A possible mechanism through inhibiting PLC$\gamma$2 phosphorylation. Vascul. Pharmacol. 50: 147-152 (2009) https://doi.org/10.1016/j.vph.2008.11.008
  26. Altan MF, Kanter M, Donmez S, Kartal ME, Buyukbas S. Combination therapy of Nigella sativa and human parathyroid hormone on bone mass, biomechanical behaviour, and structure in streptozotocin-induced diabetic rats. Acta Histochem. 109: 304-314 (2007) https://doi.org/10.1016/j.acthis.2007.02.006
  27. Kim KH, Kim HY. Momordica charantia protects against cytokineinduced apoptosis in pancreatic $\beta$-cells. Food Sci. Biotechnol. 17: 947- 952 (2008)
  28. Oprescu AI, Bikopoulos G, Naassan A, Allister EM, Tang C, Park E, Uchino H, Lewis GF, Fantus G, Rozakis-Adcock M, Wheeler MB, Adria Giacca A. Free fatty acid-induced reduction in glucosestimulated insulin secretion. Diabetes 56: 2927-2937 (2007) https://doi.org/10.2337/db07-0075
  29. Hamden K, Allouche N, Damak M, Elfeki A. Hypoglycemic and antioxidant effects of phenolic extracts and purified hydroxytyrosol from olive mill waste in vitro and in rats. Chem.-Biol. Interact. 181: 180: 421-432 (2009) https://doi.org/10.1016/j.cbi.2009.04.002
  30. Ryan M, McInerney D, Owens D, Collins P, Johnson A, Tomkin GH. Diabetes and the Mediterranean diet: A beneficial effect of oleic acid on insulin sensitivity, adipocyte glucose transport, and endothelium dependent vasoreactivity. Q. J. Med. 93: 85-91 (2000) https://doi.org/10.1093/qjmed/93.2.85
  31. Tierney AC, Roche HM. The potential role of olive oil-derived MUFA in insulin sensitivity. Mol. Nutr. Food Res. 51: 1235-1248 (2007) https://doi.org/10.1002/mnfr.200700143
  32. D'Alessandro ME, Chicco A, Lombardo YB. Dietary fish oil reverses lipotoxicity, altered glucose metabolism, and nPKC$\varepsilon$ translocation in the heart of dyslipemic insulin-resistant rats. Metab Clin. Exp. 57: 911-919 (2008) https://doi.org/10.1016/j.metabol.2008.02.005
  33. Lim HA, Jang CH, Kim JH, Kin JR, Ha YR, Song YS, Kim YK, Kim JS. Antiproliferative and anticarcinogenesis enzyme inducting activity of green tea seed extract in heatoma cells. Food Sci. Biotechnol. 15: 914-919 (2006)
  34. Yoo MA, Kim JS, Chung HK, Park WJ, Kang MH. The antioxidant activity of various cultivars of grape skin extract. Food Sci. Biotechnol. 16: 884-888 (2007)
  35. Lee YR, Hwang IG, Woo KS, Kim DJ, Hong JT, Jeong HS. Antioxidative activities of the ethyl acetate fraction from heated onion (Allium cepa). Food Sci. Biotechnol. 16: 1041-1045 (2007)
  36. Lim HK, Yoo ES, Moon JY, Jeon YJ, Cho SK. Antioxidant activity of extracts from dangyuja (Citrus grandis Osbeck) fruits produced in Jeju Island. Food Sci. Biotechnol. 15: 312-316 (2006)
  37. Hamden K, Silandre D, Delalande C, El Feki A, Carreau S. Protective effects of estrogens and caloric restriction during aging on various rat testis parameters. Asian J. Androl. 10: 837-845 (2008) https://doi.org/10.1111/j.1745-7262.2008.00430.x
  38. Ramesh B, Saravanan R, Pugalendi KV. Influence of sesame oil on blood glucose, lipid peroxidation, and antioxidant status in streptozotocin diabetic rats. J. Med. Food 8: 377-381 (2005) https://doi.org/10.1089/jmf.2005.8.377
  39. De Sousa AC, Alviano DS, Blank AF, Alves PB, Alviano CS, Gattass CR. Melissa officinalis L. essential oil: Antitumoral and antioxidant activities. J. Pharm. Pharmacol. 5: 677-681 (2004) https://doi.org/10.1211/0022357023321
  40. Ao Y, Satoh K, Shibano K, Kawahito Y, Shioda S. Singlet oxygen scavenging and cytotoxicity of essentiel oil from Rutaceae. J. Clin. Biochem. Nutr. 43: 6-12 (2008) https://doi.org/10.3164/jcbn.2008037
  41. Oke F, Aslim B, Ozturk S, Altundag S. Essential oil composition, antimicrobial and antioxidant activities of Satureja cuneifolia Ten. Food Chem. 112: 874-879 (2009) https://doi.org/10.1016/j.foodchem.2008.06.061
  42. Fang HL, Lai JT, Lin WC. Inhibitory effect of olive oil on fibrosis induced by carbon tetrachloride in rat liver. Clin. Nutr. 27: 900-907 (2008) https://doi.org/10.1016/j.clnu.2008.08.004
  43. Hamden K, Carreau S, Jamoussi K, Ayadi F, Miladi S, Lajmi S, Aloulou D, Elfeki A. 1$\alpha$,25dihydroxyvitaminD$_{3}$: Therapeutic and preventive effects against oxidative stress and hepatic, pancreatic, and renal injury in diabetic rats. J. Nutr. Vitaminol. 55: in press (2009) https://doi.org/10.3177/jnsv.55.215
  44. Sankar D, Rao RM, Sambandam G, Pugalendi KV. A pilot study of open label sesame oil in hypertensive diabetics. J. Med. Food 9: 408-412 (2006) https://doi.org/10.1089/jmf.2006.9.408
  45. Lee HR, Lee JM. Anti-stress effects of kimchi. Food Sci. Biotechnol. 18: 25-30 (2009)
  46. Shin SR, Hong JY, Yoon KY. Antioxidant properties and total phenolic contents of cherry elaeagnus (Elaeagnus multiflora Thunb.) leaf extracts. Food Sci. Biotechnol. 17: 608-612 (2008)