• Title/Summary/Keyword: anti-adipogenic effect

Search Result 130, Processing Time 0.03 seconds

Anti-obesity Effects of Black Soybean Doenjang in C57BL/6 Mice (고지방식이로 유도된 비만 마우스에서 검정콩 된장의 항비만 효과)

  • Kim, Jiyoung
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1486-1493
    • /
    • 2017
  • Doenjang is a traditional korean fermented soybean paste made from meju (fermented soybean), which are fermented by diverse microorganisms including Bacillus subtilis and molds such as Rizopus, Mucor, and Aspergillus species The purpose of this study was to investigate the antiobesity effect of the black soybean doenjang (Korean fermented soybean pastes) in C57BL/6 mice. The anti-obesity effect was determined by measuring the release of adiponectin, leptin and adipogenic transcription factors by using reverse transcription-polymerase chain reaction and western blot. Weight gain was significantly reduced in the mice fed high fat diets (HFD) plus black soybean doenjang (HBD) compared to HFD mice. The HBD were also effective in improving the lipid profile. They significantly decreased the levels of serum triglyceride and cholesterol. In addition, they had a significantly down regulated impact on antiobesity factors; leptin level and increased adiponectin level. Also, mRNA and protein expression of two adipogenic transcription factors, SREBP-1c and $PPAR-{\gamma}$, in high fat with black soybean fed mice were markedly down regulated. These results indicate that the black soybean doenjang potentiates an anti-obesity effect by modulating lipid metabolism, thereby inhibiting adipogenic transcriptional activation.

Anti-Obesity and Inhibitory Effect of Lipid Accumulation of The Cone of Pinus rigida × Pinus taeda in 3T3-L1 Cells

  • Da-Yoon Lee;Tae-Won Jang;So-Yeon Han;Seo-Yoon Park;Woo-Jin Oh;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.55-55
    • /
    • 2023
  • With the COVID-19 pandemic, there is increasing interest in anti-obesity strategies. According to the National Statistical Office, the obesity rate in Korea was 38.3% in 2020 and 37.1% in 2021. Obesity is a risk factor for several severe diseases, including stroke, heart disease, type 2 diabetes, and certain types of cancer. Pinus rigida × Pinus taeda is a hybrid of Pinus rigida Mill and Pinus taeda Linn, and its cones are considered a by-product. Although previous studies have investigated their pharmacological effects on antioxidant activity and protection against oxidative DNA damage, few researchers have explored their potential as functional natural materials. Therefore, we evaluated the anti-obesity effects of the cone of ethyl acetate fraction of P. rigida × P. taeda (ERT), specifically its ability to inhibit lipid accumulation. Our analysis showed that ERT contains phytochemicals (catechin and caffeic acid) which are known to improve immune function and inhibit cell damage. ERT inhibited lipid droplet accumulation at the cellular levels through Oil Red O staining. Furthermore, ERT suppressed the expression of adipogenic transcription factors (PPARγ and CEBP/α) as well as downstream lipogenic target genes (FAS and SREBP-1) thereby inhibiting adipogenesis. ERT also down-regulated key adipogenic markers, including aP2α, while inducing the phosphorylation of AMPK. It has been reported that PPARγ and CEBP/α are expressed in the early stages of adipose differentiation, while SREBP-1 is expressed in the late stage. Therefore, our findings suggest that ERT activates AMPK signaling pathways, which inhibits adipogenic transcription factors (PPARγ, C/EBPα, and SREBP1) and lipogenic genes (FAS and aP2α), thereby blocking lipid accumulation and preventing obesity and related disorders. ERT showed potential as a new resource for developing a functional material for anti-obesity agents.

  • PDF

Inhibition of Differentiation and Anti-Adipogenetic Effect of the Salvia plebeia R. Br. Ethanol Extract in Murine Adipocytes, 3T3-L1 Cells (배암차즈기 에탄올 추출물의 3T3-L1 지방전구세포 분화 억제 및 지방 축적 저해 효과)

  • Kim, Sung-Ok;Kim, Mi-Ryeo;Hwang, Kyung-A;Park, No-Jin;Jeong, Ji-Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.401-408
    • /
    • 2017
  • Salvia plebeia R. Br. (Lamiaceae) has been used in folk medicines in Asian countries, including Korea and China, to treat inflammatory diseases. The focus of our research was on the anti-adipogenic activity of ethanol extract from Salvia plebeia R. Br. (SPE) in 3T3-L1 adipocytes. This study investigated inhibition of differentiation and lipogenesis upon SPE treatment in 3T3-L1 cells. The results reveal that SPE at non-cytotoxic concentration significantly suppressed triglyceride accumulation and reduced expression of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein-alpha, and sterol regulatory element-binding protein as adipogenic transcription factors in 3T3-L1 adipocytes compared to non-treated control cells. Inducible phosphorylation of AMP-activated protein kinase, acetyl CoA carboxylase, and hormone-sensitive lipase as well as carnitine palmitoyltransferase-1 mRNA expression increased upon SPE treatment, which suppressed expression of fatty acid synthase. In conclusion, these results demonstrate that SPE can inhibit expression of adipogenic genes in 3T3-L1 adipocytes. Our study suggests that SPE has potential anti-obesity effects and is a novel therapeutic functional agent with anti-adipogenic activity via reduction of lipogenesis.

Bioconversion Products of Whey by Lactic Acid Bacteria Exert Anti-Adipogenic Effect

  • Lee, Ji Soo;Hyun, In Kyung;Yoon, Ji-Won;Seo, Hye-Jin;Kang, Seok-Seong
    • Food Science of Animal Resources
    • /
    • v.41 no.1
    • /
    • pp.145-152
    • /
    • 2021
  • Microbial bioconversion using lactic acid bacteria (LAB) provides several human health benefits. Although whey and whey-derived bioactive compounds can contribute to an improvement in human health, the potential anti-obesity effect of whey bioconversion by LAB has not been well studied. This study aimed to investigate whether bioconversion of whey by Pediococcus pentosaceus KI31 and Lactobacillus sakei KI36 (KI31-W and KI36-W, respectively) inhibits 3T3-L1 preadipocyte differentiation. Both KI31-W and KI36-W reduced intracellular lipid accumulation significantly, without decreasing 3T3-L1 preadipocyte proliferation. In addition, obesity-related transcription factor (peroxisome proliferator-activated receptor γ) and genes (adipocyte fatty acid-binding protein and lipoprotein lipase) were down-regulated significantly in 3T3-L1 cells in the presence of KI31-W and KI36-W. Collectively, these results suggest that bioconversion of whey by LAB exhibits anti-adipogenic activity and may be applied as a therapeutic agent for obesity.

Antioxidant Activity and Inhibitory Effect of Aster scaber Thunb. Extract on Adipocyte Differentiation in 3T3-L1 Cells (참취(Aster scaber Thunb.) 추출물의 항산화 효과와 3T3-L1 지방전구세포에서의 지방분화 억제 효과)

  • Choi, Jun-Hyeok;Park, Yun-Hee;Lee, In-Seon;Lee, Sam-Pin;Yu, Mi-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.356-363
    • /
    • 2013
  • Clinical and preclinical trials of involving drugs with anti-obesity effects have focused on screening for herbal medicines suspected to have anti-obesity activities. In this study, an extract of Aster scaver Thunb., which was prepared in 80% methanol (ASE), was assessed for its total phenol content, total flavonoid content, antioxidant activity ability to scavenge the ${\alpha}-{\alpha}$-diphenyl-${\beta}$-picrylhydrazyl, 2,2'-azino-bis-[3-ethylbenzthiazoline]-6-sulfonic acid radical, and anti-adipogenic effects. The anti-adipogenic effect of ASE on the differentiation of 3T3-L1 pre-adipocytes to adipocytes was investigated by assaying the suppression of adipocyte differentiation and lipid accumulation by using western blot analysis and the Oil Red-O assay, respectively. The staining results showed that ASE significantly inhibited 3T3-L1. Western blot analysis results showed that ASE decreased the levels of peroxisome proliferator-activated receptor-${\gamma}$, CCAAT/enhancer-binding protein ${\alpha}$, and sterol regulatory element-binding protein 1c. These results demonstrate that ASE directly inhibits the differentiation of preadipocytes, and might be an important adjunct in the therapeutic efforts to reduce adipogenesis.

Anti-Obesity Activity of Euptelea Pleiosperma Ethanol Extract (Euptelea pleiosperma 에탄올 추출물의 항비만 활성)

  • Park, Jung Ae;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.4
    • /
    • pp.336-342
    • /
    • 2015
  • Previously, Euptelea pleiosperma was identified as one of the useful sources containing anti-oxidative and anti-inflammatory activities for the first time in our research group. In this study, anti-obesity effect of E. pleiosperma ethanol extract (EPEE) was evaluated by using a pancreatic lipase enzyme inhibition assay and a cell culture model system. EPEE suppressed effectively pancreatic lipase enzyme activity dose dependently. Furthermore, EPEE significantly suppressed adipocyte differentiation, lipid accumulation, triglyceride contents, and triggered lipolysis activity on 3T3-L1 preadipocytes in a dose-dependent manner without cytotoxicity. Anti-adipogenic effect of EPEE was modulated by cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}(C/EBP{\alpha})$, $C/EBP{\beta}$ and peroxisome proliferator-activated receptor ${\gamma}(PPAR{\gamma})$ gene and protein expressions. Taken together, these results provide the important new insight that E. pleiosperma possesses anti-obesity activities such as pancreatic lipase inhibition, anti-adipogenic, and lipolysis effects. It might be utilized as promising sources in the fields of nutraceuticals. The identification of active compounds that confer anti-obesity activity of EPEE might be needed.

A Study on the Gene Expression of Adipogenic Regulators by an Herbal Composition (생약복합물에 의한 지방세포형성 조절자의 유전자 발현 연구)

  • Lee, Hae-Yong;Kang, Ryun-Hwa;Bae, Sung-Min;Chae, Soo-Ahn;Lee, Jung-Ju;Oh, Dong-Jin;Park, Suk-Won;Cho, Soo-Hyun;Shim, Yae-Jie;Yoon, Yoo-Sik
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.729-735
    • /
    • 2010
  • In our previous study, it was reported that an herbal mixture, SH21B, inhibits fat accumulation and adipogenesis both in vitro and in vivo models of obesity. SH21B is a mixture composed of seven herbs: Scutellaria baicalensis Georgi, Prunus armeniaca Maxim, Ephedra sinica Stapf, Acorus gramineus Soland, Typha orientalis Presl, Polygala tenuifolia Willd, and Nelumbo nucifera Gaertner (Ratio 3:3:3:3:3:2:2). The aim of this study was to investigate the detailed molecular mechanisms of the effects of SH21B on various regulators of the adipogenesis pathway. During the adipogenesis of 3T3-L1 cells, SH21B significantly decreased the expression levels of central transcription factors of adipogenesis, such as peroxisome proliferator-activated receptor (PPAR)$\gamma$ and CCAAT/enhancer binding protein (C/EBP)$\alpha$. To elucidate the detailed molecular mechanism of the anti-adipogenic effects of SH21B, we examined the expression levels of the various pro-adipogenic or anti-adipogenic regulators of adipogenesis upstream of $PPAR{\gamma}$ and C/$EBP{\alpha}$. The mRNA levels of Krox20 and Kruppel-like factor (KLF) 15, which are pro-adipogenic regulators, were significantly down-regulated by SH21B treatment, whereas the mRNA levels of C/$EBP{\gamma}$ and KLF5 were not changed. KLF2 and C/EBP homologous protein (CHOP), which are anti-adipogenic regulators, were significantly up-regulated by SH21B treatment. These results suggest that the molecular mechanism of the anti-adipogenic effect of SH21B involves both the down-regulations of pro-adipogenic regulators, such as Krox20 and KLF15, and the up-regulations of anti-adipogenic regulators, such as KLF2 and CHOP, which results in the suppression of central transcription factors of adipogenesis including $PPAR{\gamma}$ and C/$EBP{\alpha}$.

The Anti-Obesity Effect of Smilax china Extract (토복령 추출물의 항비만 활성)

  • Park, Jung Ae;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.354-360
    • /
    • 2014
  • In this study, the anti-obesity activity of Smilax china methanol extract (SCME) was evaluated using a pancreatic lipase enzyme inhibition assay, and a cell culture model system. Results indicated that, SCME effectively inhibited pancreatic lipase enzyme activity in a dose-dependent manner. Furthermore, SCME significantly suppressed insulin, dexamethasone, 3-isobutyl-1-methylxanthine-induced adipocyte differentiation, lipid accumulation, and triglyceride contents on 3T3-L1 preadipocytes, in a dose-dependent manner. The anti-adipogenic effect was modulated by cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins (C/EBP) ${\alpha}$, $C/EBP{\beta}$, and the peroxisome proliferator-activated receptor ${\gamma}$ gene and protein expressions. Moreover, SCME triggered lipolysis effects dose-dependently on adipocyte. Taken together, these results provide an important new insight into SCME, indicating that it possesses anti-obesity activity through pancreatic lipase inhibition, anti-adipogenic and lipolysis effects. SCME may therefore be utilized as a promising source in the field of nutraceuticals. The identification of active compounds that confer the anti-obesity activities of SCME may be a logical next step.

Anti-adipogenic and Pro-osteoblastogenic Activities of Spergularia marina Extract

  • Karadeniz, Fatih;Kim, Jung-Ae;Ahn, Byul-Nim;Kim, Mihyang;Kong, Chang-Suk
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.187-193
    • /
    • 2014
  • This is an Open Access article distributed under the terms of the Creative Commons Attribution For decades, Spergularia marina, a local food that is popular in South Korea, has been regarded as a nutritious source of amino acids, vitamins, and minerals. While several halophytes are reported to possess distinct bioactivities, S. marina has yet to be promoted as a natural source of bioactives. In this study, the effects of S. marina on the adipogenic differentiation of 3T3-L1 fibroblasts and the osteoblastic differentiation of MC3T3-E1 pre-osteoblasts and C2C12 myoblast cells were evaluated. The anti-adipogenic effect of S. marina was assessed by measuring lipid accumulation and adipogenic differentiation marker expression. S. marina treatment significantly reduced lipid accumulation and notably decreased the gene levels of peroxisome proliferator-activated receptor ${\gamma}$, CCAAT/enhancer-binding protein ${\alpha}$, and sterol regulatory element binding protein 1c. In addition, S. marina enhanced osteoblast differentiation, as indicated by increased alkaline phosphatase activity and increased levels of osteoblastogenesis indicators, namely bone morphogenetic protein-2, osteocalcin, and type I collagen. In conclusion, S. marina could be a source of functional food ingredients that improve osteoporosis and obesity. Further studies, including activity-based fractionation, will elucidate the mechanism of action and active ingredients of S. marina, which would provide researchers with a better understanding of the nutraceutical and therapeutic applications of S. marina.

Inhibitory Effect of Crude Extracts from a Brown Alga Sargassum siliquanstrum on 3T3-L1 Adipocyte Differentiation (꽈배기모자반 추출물이 3T3-L1 지방세포 분화에 미치는 영향)

  • Kong, Chang-Suk;Lee, Jung Im;Kwon, Myeong Sook;Seo, Youngwan
    • Ocean and Polar Research
    • /
    • v.37 no.4
    • /
    • pp.279-285
    • /
    • 2015
  • In this study, the potential capacity of the crude extract and its solvent fractions from S. siliquanstrum against adipocyte differentiation were evaluated in 3T3-L1 adipocytes. The anti-adipogenic effect of S. siliquanstrum was evidenced by the fact that its crude extract decreases the lipid accumulation of differentiating cells and the expression levels of crucial adipogenesis markers, peroxisome proliferator-activated receptor $(PPAR){\gamma}$ and CCAAT/enhancer-binding protein $(C/EBP){\alpha}$. All solvent fractions except the water fraction showed an observable decrease in lipid accumulation and $PPAR{\gamma}$ and $C/EBP{\alpha}$ expressions. In conclusion, these results suggest that S. siliquanstrum possesses obesity inhibiting components, which may possibly be used as a valuable anti-obesity agent for reducing the risk of obesity.