Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.5.729

A Study on the Gene Expression of Adipogenic Regulators by an Herbal Composition  

Lee, Hae-Yong (Department of Microbiology, Chung-Ang University College of Medicine)
Kang, Ryun-Hwa (Department of Microbiology, Chung-Ang University College of Medicine)
Bae, Sung-Min (Department of Microbiology, Chung-Ang University College of Medicine)
Chae, Soo-Ahn (Department of Pediatrics, Chung-Ang University College of Medicine)
Lee, Jung-Ju (Department of Pediatrics, Chung-Ang University College of Medicine)
Oh, Dong-Jin (Department of Internal Medicine, Chung-Ang University College of Medicine)
Park, Suk-Won (Department of Radiation Oncology, Chung-Ang University College of Medicine)
Cho, Soo-Hyun (Department of Family Medicine, Chung-Ang University College of Medicine)
Shim, Yae-Jie (Department of General Education, Seoul Women's University)
Yoon, Yoo-Sik (Department of Microbiology, Chung-Ang University College of Medicine)
Publication Information
Journal of Life Science / v.20, no.5, 2010 , pp. 729-735 More about this Journal
Abstract
In our previous study, it was reported that an herbal mixture, SH21B, inhibits fat accumulation and adipogenesis both in vitro and in vivo models of obesity. SH21B is a mixture composed of seven herbs: Scutellaria baicalensis Georgi, Prunus armeniaca Maxim, Ephedra sinica Stapf, Acorus gramineus Soland, Typha orientalis Presl, Polygala tenuifolia Willd, and Nelumbo nucifera Gaertner (Ratio 3:3:3:3:3:2:2). The aim of this study was to investigate the detailed molecular mechanisms of the effects of SH21B on various regulators of the adipogenesis pathway. During the adipogenesis of 3T3-L1 cells, SH21B significantly decreased the expression levels of central transcription factors of adipogenesis, such as peroxisome proliferator-activated receptor (PPAR)$\gamma$ and CCAAT/enhancer binding protein (C/EBP)$\alpha$. To elucidate the detailed molecular mechanism of the anti-adipogenic effects of SH21B, we examined the expression levels of the various pro-adipogenic or anti-adipogenic regulators of adipogenesis upstream of $PPAR{\gamma}$ and C/$EBP{\alpha}$. The mRNA levels of Krox20 and Kruppel-like factor (KLF) 15, which are pro-adipogenic regulators, were significantly down-regulated by SH21B treatment, whereas the mRNA levels of C/$EBP{\gamma}$ and KLF5 were not changed. KLF2 and C/EBP homologous protein (CHOP), which are anti-adipogenic regulators, were significantly up-regulated by SH21B treatment. These results suggest that the molecular mechanism of the anti-adipogenic effect of SH21B involves both the down-regulations of pro-adipogenic regulators, such as Krox20 and KLF15, and the up-regulations of anti-adipogenic regulators, such as KLF2 and CHOP, which results in the suppression of central transcription factors of adipogenesis including $PPAR{\gamma}$ and C/$EBP{\alpha}$.
Keywords
Adipogenesis; SH21B; Krox20; KLF15; KLF2; CHOP;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Takano, H. and I. Komuro. 2009. Peroxisome proliferatoractivated receptor gamma and cardiovascular diseases. Circ. J. 73, 214-220.   DOI
2 Tanaka, T., N. Yoshida, T. Kishimoto, and S. Akira. 1997. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO. J. 16, 7432-7443.   DOI
3 Tontonoz, P., E. Hu, and B. M. Spiegelman. 1994. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79, 1147-1156.   DOI
4 Oishi, Y., I. Manabe, K. Tobe, K. Tsushima, T. Shindo, K. Fujiu, G. Nishimura, K. Maemura, T. Yamauchi, N. Kubota, R. Suzuki, T. Kitamura, S. Akira, T. Kadowaki, and R. Nagai. 2005. Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab. 1, 27-39.   DOI
5 Rosen, E. D. and O. A. MacDougald. 2006. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7, 885-896.   DOI
6 Shao, D. and M. A. Lazar. 1997. Peroxisome proliferator activated receptor gamma, CCAAT/enhancer-binding protein alpha, and cell cycle status regulate the commitment to adipocyte differentiation. J. Biol. Chem. 272, 21473-21478.   DOI
7 Shepherd, P. R. and B. B. Kahn. 1999. Glucose transporters and insulin action-implications for insulin resistance and diabetes mellitus. N. Engl. J. Med. 341, 248-257.   DOI
8 Mori, T., H. Sakaue, H. Iguchi, H. Gomi, Y. Okada, Y. Takashima, K. Nakamura, T. Nakamura, T. Yamauchi, N. Kubota, T. Kadowaki, Y. Matsuki, W. Ogawa, R. Hiramatsu, and M. Kasuga. 2005. Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J. Biol. Chem. 280, 12867-12875.   DOI
9 Morrison, R. F. and S. R. Farmer. 2000. Hormonal signaling and transcriptional control of adipocyte differentiation. J. Nutr. 130, 3116S-3121S.
10 Morrison, R. F. and S. R. Farmer. 1999. Role of PPARgamma in regulating a cascade expression of cyclin-dependent kinase inhibitors, p18(INK4c) and p21(Waf1/Cip1), during adipogenesis. J. Biol. Chem. 274, 17088-17097.   DOI
11 Nawrocki, A. R. and P. E. Scherer. 2005. Keynote review: the adipocyte as a drug discovery target. Drug Discov. Today 10, 1219-1230.   DOI
12 Medina-Gomez, G., S. Virtue, C. Lelliott, R. Boiani, M. Campbell, C. Christodoulides, C. Perrin, M. Jimenez-Linan, M. Blount, J. Dixon, D. Zahn, R. R. Thresher, S. Aparicio, M. Carlton, W. H. Colledge, M. I. Kettunen, T. Seppanen-Laakso, J. K. Sethi, S. O'Rahilly, K. Brindle, S. Cinti, M. Oresic, R. Burcelin, and A. Vidal-Puig. 2005. The link between nutritional status and insulin sensitivity is dependent on the adipocyte-specific peroxisome proliferatoractivated receptor-gamma2 isoform. Diabetes 54, 1706-1716.   DOI
13 Lee, H., R. Kang, and Y. Yoon. 2009. SH21B, an anti-obesity herbal composition, inhibits fat accumulation in 3T3-L1 adipocytes and high fat diet-induced obese mice through the modulation of the adipogenesis pathway. J. Ethnopharmacol. DOI:10.1016/j.jep.2009.12.002   DOI
14 Kaczynski, J., T. Cook, and R. Urrutia. 2003. Sp1- and Kruppel-like transcription factors. Genome Biol. 4, 206.   DOI
15 Lin, F. T. and M. D. Lane. 1994. CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program. Proc. Natl. Acad. Sci. USA 91, 8757-8761.   DOI
16 Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.   DOI
17 Koerner, A., J. Kratzsch, and W. Kiess. 2005. Adipocytokines: leptin--the classical, resistin--the controversical, adiponectin-- the promising, and more to come. Best Pract. Res. Clin. Endocrinol. Metab. 19, 525-546.   DOI
18 Gray, S., M. W. Feinberg, S. Hull, C. T. Kuo, M. Watanabe, S. Sen-Banerjee, A. DePina, R. Haspel, and M. K. Jain. 2002. The Kruppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J. Biol. Chem. 277, 34322-34328.   DOI
19 Gustafson, B. and U. Smith. 2006. Cytokines promote Wnt signaling and inflammation and impair the normal differentiation and lipid accumulation in 3T3-L1 preadipocytes. J. Biol. Chem. 281, 9507-9516.   DOI
20 Hamm, J. K., A. K. el Jack, P. F. Pilch, and S. R. Farmer. 1999. Role of PPAR gamma in regulating adipocyte differentiation and insulin-responsive glucose uptake. Ann. N Y Acad. Sci. 892, 134-145.   DOI
21 Kadowaki, T., T. Yamauchi, N. Kubota, K. Hara, K. Ueki, and K. Tobe. 2006. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest 116, 1784-1792.   DOI
22 Chen, Z., J. I. Torrens, A. Anand, B. M. Spiegelman, and J. M. Friedman. 2005. Krox20 stimulates adipogenesis via C/EBPbeta-dependent and -independent mechanisms. Cell Metab. 1, 93-106.   DOI
23 Spiegelman, B. M. and J. S. Flier. 2001. Obesity and the regulation of energy balance. Cell 104, 531-543.   DOI
24 Darlington, G. J., S. E. Ross, and O. A. MacDougald. 1998. The role of C/EBP genes in adipocyte differentiation. J. Biol. Chem. 273, 30057-30060.   DOI
25 Freytag, S. O., D. L. Paielli, and J. D. Gilbert. 1994. Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev. 8, 1654-1663.   DOI
26 Ahmed, W., O. Ziouzenkova, J. Brown, P. Devchand, S. Francis, M. Kadakia, T. Kanda, G. Orasanu, M. Sharlach, F. Zandbergen, and J. Plutzky. 2007. PPARs and their metabolic modulation: new mechanisms for transcriptional regulation? J. Intern. Med. 262, 184-198.   DOI
27 Zhang, J., M. Fu, T. Cui, C. Xiong, K. Xu, W. Zhong, Y. Xiao, D. Floyd, J. Liang, E. Li, Q. Song, and Y. E. Chen. 2004. Selective disruption of PPARgamma 2 impairs the development of adipose tissue and insulin sensitivity. Proc. Natl. Acad. Sci. USA 101, 10703-10708.   DOI