• Title/Summary/Keyword: anti-adipogenic effect

Search Result 128, Processing Time 0.023 seconds

Anti-obesity Effect of Aster Yomena Ethanol Extract in High Fat Diet-induced Obese Mice (고지방 식이로 유도된 비만 생쥐에서 쑥부쟁이 에탄올 추출물의 항비만 효과)

  • Lee, Ho Jae;Kim, Hyun Sik;Seo, Sang Wan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.6
    • /
    • pp.348-355
    • /
    • 2017
  • Aster yomena (AY) have been used as a traditional medicine to treat cough, bronchial asthma, and insect bites in Korea. In this study, we evaluated the inhibition of adipogenesis in 3T3-L1 cells and in high-fat diet (HFD)-induced obese mice by AY ethanol extract. Lipid accumulation measurement indicates that AY markedly inhibited adipogenesis in a dose-dependent manner. qRT-PCR results demonstrated that the mRNA expression of adipogenic transcription factors such as peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR-{\gamma}$) in 3T3-L1 cells were significantly down-regulated by AY treatment. And inhibited the expression of FAS, a protein responsible for lipid synthesis, transport and storage. Oral administration of AY (100, 250, and 500 mg/kg, P.O/daily for 4 weeks) was conducted in high-fat diet induced obese mice and C57BL/6 mice. AY was orally administered for 4 weeks to extract liver and epididymal fat, and hematoxylin and eosin staining(H&E staining) was observed. Observation showed that the fat concentration of liver tissue tended to decrease dose-dependently and decreased significantly at 500 mg/kg concentration. The AY-administered group of HFD-induced mice had a lower body weight gain, along with decreased triglycerides and total cholesterol compared with the control mice, however, the HDL-cholesterol/total cholesterol ratio was increased. These results indicate that AY exhibits anti-obesity effects in obese mice by decreasing in serum lipid levels and lipogenesis related gene.

The Study on anti-obesity of Myrrh ethanol extract (몰약(沒藥) 에탄올 추출물의 항비만에 관한 연구)

  • Baek, Seon-Jae;Kim, Dong-Hee
    • The Korea Journal of Herbology
    • /
    • v.31 no.4
    • /
    • pp.11-18
    • /
    • 2016
  • Objectives : The objective of this study was to investigate the effect of Myrrh 80% ethanol extract on adipocyte differentiation and adipogenesis in 3T3-L1 cell.Methods : Myrrh was prepared by extracting with 80% ethanol. Cell viability was assessed by MTT assay using 3T3-L1 cells. Anti-obesity activity was measured in lipid droplets and triglyceride (TG) accumulation in 3T3-L1 cells. We also analyzed the expression of C/EBPβ, C/EBPα, PPARγ, SREBP1c, and aP2 by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, we observed the production of fatty acid, acetyl-CoA carboxylase and Oil-red O stainingResults : No cytotoxicity from Myrrh 80% ethanol extracts was observed at the concentration of 1, 10, 100 (㎍/㎖) in 3T3-L1 cells. Treatment with Myrrh significantly suppressed the terminal differentiation of 3T3-L1 in a dose-dependent manner, as confirmed by a decrease in triglyceride and Fatty acid and Acetyl-CoA carboxylase. Also, Myrrh exhibited potential adipogenesis inhibition and downregulated the expression of pro-adipogenic transcription factors, such as sterol regulatory element binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα) and C/EBPβ, and adipocyte expressed genes, such as adipocyte fatty acid binding protein (aP2) and Fas. In addition, lipid accumulation determined by Oil-red O staining showed that Myrrh extract had inhibitory effects on lipid accumulation in 3T3-L1 cells.Conclusions : These results suggest that Myrrh suppresses obesity factors in 3T3-L1 cells. Myrrh may be a useful medical herbs for attenuating metabolic diseases such as obesity.

Anti-obesity Effects of Barley Sprout Young Leaf on 3T3-L1 Cells and High-fat Diet-induced Obese Mice (지방분화가 유도된 3T3-L1 세포와 고지방식이로 유도된 마우스에서 보리순 물추출물의 항비만 효과)

  • Kang, Byoung Man;Sim, Mi Ok;Kim, Min Suk;Yoo, Seung Jin;Yeo, Jun Hwan;Jung, Won Seok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.6
    • /
    • pp.367-374
    • /
    • 2017
  • Background: An imbalance in energy intake and expenditure can cause obesity, which is a major risk factor for chronic diseases such as heart disease, type 2 diabetes, insulin resistance, cancers and hyperlipidemia. Methods and Results: In this study, we evaluated the anti-obesity effects of a water extract from the young leaves of barley sprout (BS) in 3T3-L1 cells and in high-fat diet (HFD)-induced obese mice (HF). Lipid accumulation measurement indicates that BS markedly inhibited adipogenesis by reducing lipid droplet production in a dose-dependent manner. Furthermore, the mRNA expression of adipogenic transcription factors peroxisome proliferator-activated receptor-${\gamma}$ and fatty acid synthetase, CCAAT/enhancer binding protein-${\alpha}$ and fatty acid binding protein 4 in 3T3-L1 cells was significantly inhibited by BS treatment. In an in vivo test, the BS-administered group of HFD-induced mice showed less body weight gain, and lower liver and epididymal white adipose tissue weights. The BS-treated mice showed decreased serum levels of leptin and lipids compared to untreated HFD mice and the levels of adiponectin and the HDL-cholesterol/total cholesterol ratio increased. These results indicate that BS inhibits body fat accumulation by reducing the mRNA expression of lipogenesis transcription factors and increasing serum adipokine concentration in in vitro and in vivo tests. Conclusions: BS reduced high fat diet-induced weight gain and had a positive effect on dyslipidemia.

Antioxidant and Anti-Adipogenic Effects of Ethanolic Extracts from Tartary and Common Buckwheats (쓴메밀 및 단메밀 에탄올 추출물의 항산화 및 지방세포 분화억제 효과)

  • Yoon, Bo-Ra;Cho, Bong-Jae;Lee, Hyo-Ku;Kim, Dae-Jung;Rhee, Seong-Kap;Hong, Hee-Do;Kim, Kyung-Tack;Cho, Chang-Won;Choi, Hyeon-Son;Lee, Boo-Yong;Lee, Ok-Hwan
    • Food Science and Preservation
    • /
    • v.19 no.1
    • /
    • pp.123-130
    • /
    • 2012
  • In this study, 80% ethanolic extracts of tartary and common buckwheats were assessed for their total phenol content, total flavonoids content, antioxidant activity (DPPH, ABTS radical scavenging activity and reducing power), and anti-adipogenic effects. Our results show that total phenol contents of 80% ethanolic extract from tartary and common buckwheats were $17.35{\pm}0.41$ and $8.20{\pm}0.28\;{\mu}g$ GAE/g, respectively. Antioxidant activities of 80% ethanolic extract from tartary buckwheat were significantly higher than that of common buckwheat extract (p<0.05). During adipocyte differentiation, 80% ethanolic extracts of tartary and common buckwheat significantly inhibited lipid accumulation compared to control cells. We further evaluated the effect of buckwheat extracts on the changes of key gene expression associated with 3T3-L1 adipogenesis and ROS production. Tartary buckwheat extract was more suppressed the mRNA expressions ($PPAR{\gamma}$ and aP2) than that of common buckwheat extract. Moreover, tartary buckwheat inhibited the mRNA expression of both NOX4 (NADPH oxidase 4) and G6PDH (glucose-6-phosphate dehydrogenase). These results indicate that anti-adipogenesis effect of tartary buckwheat can be attributed to phenolic compound that may potentially inhibit ROS production.

Antiobesity Activity of Chrysanthemum zawadskii Methanol Extract (구절초 추출물의 항비만 활성)

  • Park, Jung Ae;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.299-306
    • /
    • 2015
  • Chrysanthemum zawadskii, a herbaceous perennial plant belonging to the Compositae, grows wild in Asian countries, including Japan, China, and Korea. The biological, antioxidative, anti-inflammatory, and antibacterial activities of C. zawadskii have been reported, its antiobesity activity has not been elucidated. In the present study, the effect of C. zawadskii methanol extract (CZME) on pancreatic lipase enzyme activity, adipocyte differentiation, and adipogenesis was investigated using an in vitro assay and a cell model system. CZME effectively suppressed lipase enzyme activity in a dose-dependent manner. CZME also inhibited insulin, dexamethasone, 3-isobutyl-1-methylxanthine (MDI)-induced adipocyte differentiation, lipid accumulation, and the level of triglyceride in 3T3-L1 preadipocytes in a dose-dependent manner, without cytotoxicity. The antiobesity effect of CZME might be modulated by gene and protein expression of cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins (C/EBP) α, C/EBPβ, and the peroxisome proliferator-activated receptor γ (PPAR γ). CZME also triggered lipolysis in a dose-dependent manner in MDI-induced 3T3-L1 preadipocytes. Taken together, these results provide important new insights into the antiobesity activities of C. zawadskii, showing that they involve pancreatic lipase inhibition, as well as antiadipogenic and lipolysis effects. CZME might be a promising source in the field of nutraceuticals. However, the active compounds that confer the antiobesity activities of CZME need to be identified.

Anti-obesity Activities of Cirsium setidens Nakai Ethanolic Extract (고려엉겅퀴 주정 추출물을 함유하는 임상시험제품의 항비만 활성 평가)

  • Cho, Bong-Yeon;Choi, Sun-Il;Choi, Seung-Hyun;Sim, Wan-Sup;Xionggao, Han;Ra, Moon-Jin;Kim, Sun-Young;Kang, Il-Jun;Han, Kyoung-Chan;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.5
    • /
    • pp.389-398
    • /
    • 2018
  • The purpose of this study was to evaluate anti-obesity activity of Cirsium setidens Nakai test material (CNTM) in 3T3-L1 adipocytes and obese C57BL/6J mice fed with a high-fat diet using various obesity-related in vitro experiments. During adipocyte differentiation, CNTM significantly inhibited lipid accumulation and ROS production compared to controls. To evaluate whether CNTM could exert glycerol release effects on mature 3T3-L1 adipocytes, we treated cells with various concentrations of CNTM for 1 h. Treatment of mature adipocytes with $160-320{\mu}g/mL$ of CNTM increased the release of glycerol, but not in a significant dose-dependent manner. Anti-adipogenic and anti-lipogenic effects of CNTM seemed to be mediated by the inhibition of $PPAR{\gamma}$ and $C/EBP{\alpha}$. Moreover, CNTM stimulated fatty acid oxidation in an AMPK-dependent manner. CNTM-treated groups of C57BL/6J mice showed reduced body weights and adipose tissue weight with improving serum lipid profiles and adiponectin protein expression in obese C57BL/6J mice fed with a high-fat diet. These results suggest that CNTM might have anti-obesity effect on adipogenesis and lipid metabolism in vitro and in vivo. This presents the possibility of developing a treatment for obesity using nontoxic natural resources.

The Anti-adipogenic and Lipolytic Effect of Jinkyool (Citrus sunki Hort. ex Tanaka) Leaf Extract in 3T3-L1 Cells (3T3-L1 지방세포에서 진귤 잎 유래 polymethoxyflavones 다량 함유 분획물(PRF)의 항지방생성 및 지방분해 효과)

  • Jin, Yeong Jun;Jang, Mi Gyeong;Kim, Jae-Won;Kang, Minyeong;Ko, Hee Chul;Kim, Se Jae
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.542-549
    • /
    • 2022
  • Polymethoxyflavones (PMFs) are flavonoids mainly found in citrus fruits and have been reported to exhibit a wide range of bioactivities, including anti-obesity, anti-cancer, and anti-inflammatory actions. To utilize PMFs as functional materials, it is necessary to develop a simple method of obtaining PMFs from citrus tissues containing a large amount of PMFs. It has been reported that Jinkyool (C. sunki Hort ex. Tanaka) peel contained a large amount of PMFs, but there are no studies on PMFs isolated from its leaves. In this study, we established a simple procedure for obtaining the PMF-rich fraction (PRF) from the leaves of Jinkyool and investigated the effects of PRF on lipid metabolism in 3T3-L1 cells. PRF inhibited lipogenesis during the differentiation of 3T3-L1 preadipocytes. It decreased the expression of peroxisome proliferator-activated receptor gamma (PPAR𝛾) and CCAAT/enhancer binding protein alpha (CEBP𝛼), FAS, and adipocyte fatty-acid-binding protein 2 (aP2). In mature 3T3-L1 adipocytes, PRF increases the phosphorylation of protein kinase A (PKA)/hormone-sensitive lipase (HSL), which are key factors involved in lipolysis. Moreover, it increases the phosphorylation of the AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) involved in fatty acid oxidation. These results suggest that PRF from Jinkyool leaves can be used as an anti-obesity agent with the action of inhibiting lipogenesis and promoting lipolysis and fatty acid oxidation in 3T3-L1 adipocytes.

Study of Mori Fructus and Dried Mori Fructus Extracts on the Antioxidant Effect and the Inhibitory Effect on Adipocyte Differentiation (상심자와 건조상심자 추출물의 항산화 효과 및 전지방세포 분화억제 효과에 관한 연구)

  • Kim, Hyung-Gu;Wang, Jing-Hua;Lim, Dong-Woo;Chae, Hee-Sung;Chin, Young-Won;Choi, Han-Seok;Kim, Hojun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.24 no.4
    • /
    • pp.1-13
    • /
    • 2014
  • Objectives This study was to investigate the antioxidative capacity, antiobesity effect and anti-diabetes effects of Mori Fructus and dried Mori Fructus in Raw 264.7 cells and 3T3-L1 cells. Methods 3 different types of Mori Fructus extracts (water 100%, ethanol 30%, ethanol 100%) were used in this study. And 3 different types of dried Mori Fructus extracts (water 100%, ethanol 30%, ethanol 100%) were used in this study. Total polyphenol compund, total favonoid compound, DPPH radical scavenging, ROS activity, NO, cell proliferation were measured in the experiment. Expressions of adipogenic transcription factors including $C/EBP-{\alpha}$, $C/EBP-{\beta}$, $PPAR-{\alpha}$, $PPAR-{\gamma}$, $AMPK-{\alpha}$ were analyzed by Real time PCR. Results Mori Fructus extracts measurements are higher than dried Mori Fructus extracts measurements at Total flavonoid compound and total flavonoid compound. Mori Fructus extracts measurements are lower than dried Mori Fructus extracts measurements at DPPH radical scavenging, ROS activity, NO. In RT-PCR analysis, there is a tendency that dried Mori Fructus extracts inhibit the expression of $C/EBP-{\alpha}$, $C/EBP-{\beta}$ genes. In RT-PCR analysis, there is a tendency that dried Mori Fructus extracts promote the expression of $PPAR-{\alpha}$, $PPAR-{\gamma}$, $AMPK-{\alpha}$ genes. Conclusions Mori Fructus is effective on inhibiting the oxidation and dried Mori Fructus is effective on inhibiting the obesity and diabetes.

The Role of Resveratrol in Lipid Metabolism: A Systematic Review of Current Basic and Translational Evidence (레스베라트롤의 지질 대사 효과에 대한 체계적 문헌 고찰)

  • Choi, Seung Kug;Moon, Hyun-Seuk
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.2
    • /
    • pp.67-73
    • /
    • 2016
  • Resveratrol is a non-flavonoid polyphenol which belongs to the stilbenes group and is naturally generated in several plants in response to damage or fungal invasion. It has been shown in published studies that resveratrol has an anti-adipogenic effect. A good consensus regarding the involvement of a down-regulation of $C/EBP{\alpha}$ and $PPAR{\gamma}$ in this effect has been reached. In addition, different metabolic pathways involved in triacylglycerol metabolism in white adipose tissue have been shown to be regulated by resveratrol. Concerning lipolysis, though this compound in itself seems to be unable to cause lipolysis, it increases lipid mobilization stimulated by ${\beta}-adrenergic$ agents. The increase in brown adipose tissue thermogenesis, and accordingly the associated energy dissipation, can attribute to accounting for the body-fat reducing effect of resveratrol. Besides its effects on adipose tissue, resveratrol can also acts on other organs and tissues. Therefore, it increases mitochondrial biogenesis and accordingly fatty acid oxidation in skeletal muscle and liver. This effect can also attribute to the body-fat reducing effect of this molecule. The present review purposes to collect the evidence concerning the potential mechanisms of action which underlie the anti-obesity effects of resveratrol, acquired either in cultured cells lines and animal models.

Inhibition of Adipocyte Differentiation and Adipogenesis by Aged Black Garlic Extracts in 3T3-L1 Preadipocytes (흑마늘 추출물에 의한 3T3-L1 지방전구세포의 분화 및 adipogenesis 억제에 관한 연구)

  • Park, Jung-Ae;Park, Cheol;Han, Min-Ho;Kim, Byung-Woo;Chung, Yoon-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.720-728
    • /
    • 2011
  • Garlic (Allium sativum) has been used as a source food as well as a traditional folk medicine ingredient since ancient times. Aged black garlic is a type of fermented garlic and is expected to have stronger anticancer and antioxidant activities than raw garlic. However, the mechanisms of their inhibitory effects on adipocyte differentiation and adipogenesis are poorly understood. In the present study, the effects and mechanisms of water extracts of raw garlic (WERG) and aged black garlic (WEABG) on adipocyte differentiation and adipogenesis in 3T3-L1 preadipocytes were investigated. Treatment with WEABG significantly suppressed terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner as confirmed by a decrease in lipid droplet number and lipid content through Oil Red O staining, however WERG had no such effect. In addition, WEABG reduced accumulation of cellular triglyceride, which is associated with a significant inhibition of key pro-adipogenic transcription factors including peroxisome proliferator-activated receptor ${\gamma}$ (PPAR${\gamma}$), cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ (C/EBP${\alpha}$) and C/EBP${\beta}$. Taken together, these results provide important new insight that aged black garlic might inhibit adipogenesis by suppressing the pro-adipogenic transcription factors in 3T3-L1 preadipocytes, and further studies will be needed to identify the active compounds that confer the anti-obesity activity of aged black garlic.