• 제목/요약/키워드: anti- evolution

검색결과 51건 처리시간 0.021초

Synergetics based damage detection of frame structures using piezoceramic patches

  • Hong, Xiaobin;Ruan, Jiaobiao;Liu, Guixiong;Wang, Tao;Li, Youyong;Song, Gangbing
    • Smart Structures and Systems
    • /
    • 제17권2호
    • /
    • pp.167-194
    • /
    • 2016
  • This paper investigates the Synergetics based Damage Detection Method (SDDM) for frame structures by using surface-bonded PZT (Lead Zirconate Titanate) patches. After analyzing the mechanism of pattern recognition from Synergetics, the operating framework with cooperation-competition-update process of SDDM was proposed. First, the dynamic identification equation of structural conditions was established and the adjoint vector (AV) set of original vector (OV) set was obtained by Generalized Inverse Matrix (GIM).Then, the order parameter equation and its evolution process were deduced through the strict mathematics ratiocination. Moreover, in order to complete online structural condition update feature, the iterative update algorithm was presented. Subsequently, the pathway in which SDDM was realized through the modified Synergetic Neural Network (SNN) was introduced and its assessment indices were confirmed. Finally, the experimental platform with a two-story frame structure was set up. The performances of the proposed methodology were tested for damage identifications by loosening various screw nuts group scenarios. The experiments were conducted in different damage degrees, the disturbance environment and the noisy environment, respectively. The results show the feasibility of SDDM using piezoceramic sensors and actuators, and demonstrate a strong ability of anti-disturbance and anti-noise in frame structure applications. This proposed approach can be extended to the similar structures for damage identification.

Biotoxins for Cancer Therapy

  • Liu, Cui-Cui;Yang, Hao;Zhang, Ling-Ling;Zhang, Qian;Chen, Bo;Wang, Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권12호
    • /
    • pp.4753-4758
    • /
    • 2014
  • In recent times, a number of studies have provided evidence that biotoxins present great potential as antitumor agents, such as snake venom, bee venom, some bacteria toxins and plant toxins, and thus could be used as chemotherapeutic agents against tumors. The biodiversity of venoms and toxins make them a unique source from which novel anticancer agent may be developed. Biotoxins, also known as natural toxins, include toxic substances produced by plants, animals and microorganisms. Here, we systematically list representative biological toxins that have antitumor properties, involving animal toxins, plant toxins, mycotoxins as well as bacterial toxins. In this review, we summarize the current knowledge involving biotoxins and the active compounds that have anti-cancer activity to induce cytotoxic, antitumor, immunomodulatory, and apoptotic effects in different tumor cells in vivo or in vitro. We also show insights into the molecular and functional evolution of biotoxins.

Direct Observation on Pyrolysis of Some Plastics

  • Takasu, Tomio;Itou, Hideyuki;Shibata, Etsuro;Kasai, Eiki;Nakamura, Takashi
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.742-745
    • /
    • 2001
  • Plastics are one of difficult materials for recycling due to their characteristics in use. Recycling ratio of waste plastics was around 40% in last year in Japan, which includes energy recovery. Feed stock recycling and mechanical recycling are not easy because of additives in commercial plastics. Then, pyrolysis treatments have been done to recovery energy. Although plastics are easy to fire, complete combustion of them is not easy if anti-firing agents are added especially. Therefore, researches on pyrolysis or combustion behaviors of plastics containing additives are important from a view point recycling of plastics. Direct observation of popular plastics like polystyrene (PS), polycarbonate (PC), polyphenyle ether (PPE) and polyvinyl chloride (PVC) to investigate their pyrolysis behaviors in the present study. In case of PS, melting and gas evolution started at 9$0^{\circ}C$ and 39$0^{\circ}C$ respectively. And combustion finished at 445$^{\circ}C$. On the other hand, more than $600^{\circ}C$ and sufficient oxygen are required for complete combustion of PC and PPE.

  • PDF

Understanding Rifampicin Resistance in Tuberculosis through a Computational Approach

  • Kumar, Satish;Jena, Lingaraja
    • Genomics & Informatics
    • /
    • 제12권4호
    • /
    • pp.276-282
    • /
    • 2014
  • The disease tuberculosis, caused by Mycobacterium tuberculosis (MTB), remains a major cause of morbidity and mortality in developing countries. The evolution of drug-resistant tuberculosis causes a foremost threat to global health. Most drug-resistant MTB clinical strains are showing resistance to isoniazid and rifampicin (RIF), the frontline anti-tuberculosis drugs. Mutation in rpoB, the beta subunit of DNA-directed RNA polymerase of MTB, is reported to be a major cause of RIF resistance. Amongst mutations in the well-defined 81-base-pair central region of the rpoB gene, mutation at codon 450 (S450L) and 445 (H445Y) is mainly associated with RIF resistance. In this study, we modeled two resistant mutants of rpoB (S450L and H445Y) using Modeller9v10 and performed a docking analysis with RIF using AutoDock4.2 and compared the docking results of these mutants with the wild-type rpoB. The docking results revealed that RIF more effectively inhibited the wild-type rpoB with low binding energy than rpoB mutants. The rpoB mutants interacted with RIF with positive binding energy, revealing the incapableness of RIF inhibition and thus showing resistance. Subsequently, this was verified by molecular dynamics simulations. This in silico evidence may help us understand RIF resistance in rpoB mutant strains.

Review on sodium corrosion evolution of nuclear-grade 316 stainless steel for sodium-cooled fast reactor applications

  • Dai, Yaonan;Zheng, Xiaotao;Ding, Peishan
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3474-3490
    • /
    • 2021
  • Sodium-cooled fast reactor (SFR) is the preferred technology of the generation-IV fast neutron reactor, and its core body mainly uses nuclear-grade 316 stainless steel. In order to prolong the design life of SFRs to 60 years and more, it is necessary to summarize and analyze the anti-corrosion effect of nuclear grade 316 stainless steel in high temperature sodium environment. The research on sodium corrosion of nuclear grade 316 stainless steel is mainly composed of several important factors, including the microstructure of stainless steel (ferrite layer, degradation layer, etc.), the trace chemical elements of stainless steel (Cr, Ni and Mo, etc) and liquid impurity elements in sodium (O, C and N, etc), carburization and mechanical properties of stainless steel, etc. Through summarizing and constructing the sodium corrosion rate equations of nuclear grade 316 stainless steel, the stainless steel loss of thickness can be predicted. By analyzing the effects of temperature, oxygen content in sodium and velocity of sodium on corrosion rate, the basis for establishing integrity evaluation standard of SFR core components with sodium corrosion is provided.

Effects of additives and sintering temperature on phase evolution and properties of carbon-clay ceramic composites

  • Aramide, Fatai Olufemi;Adepoju, O.D.;Popoola, Abimbola Patricia
    • Journal of Ceramic Processing Research
    • /
    • 제19권6호
    • /
    • pp.483-491
    • /
    • 2018
  • Effects of additives on phase development and physico-mechanical properties of mullite-carbon was investigated. Powdered clay, kaolinite and graphite of predetermined compositions were blended with additives using ball mill for 3 hrs at 60 rev/min. Samples were produced by uniaxial compression and sintered between $1400^{\circ}C$ and $1600^{\circ}C$ for one hr. They were characterized for various properties, developed phases and microstructural features. It was observed that the properties and phase developments in the samples were influenced by the additives. 10 wt % SiC served as nucleating point for SiC around $1400^{\circ}C$. 10wt % $TiO_2$ lead to development of 2.5 wt % TiC at $1500^{\circ}C$ which increased to 6.8 wt % at $1600^{\circ}C$. Ifon clay in the sample leads to development of anorthite and microcline in the samples. 10wt % $TiO_2$ is effective as anti-oxidant for graphite up to $1500^{\circ}C$. Base on strength and absorbed energy, sample C (with 10wt % $TiO_2$) sintered at $1500^{\circ}C$ is considered to be optimum.

The Merits of Social Credit Rating in China? An Exercise in Interpretive Pros Hen Ethical Pluralism

  • Clancy, Rockwell F.
    • Journal of Contemporary Eastern Asia
    • /
    • 제20권1호
    • /
    • pp.102-119
    • /
    • 2021
  • Social credit rating in China (SCRC) has been criticized as "dystopian" and "Orwellian," an attempt by the Communist Party to hold onto power by exerting ever greater control over its citizens. To explain such measures, value differences are often invoked, that Chinese value stability and cooperation over privacy and freedom. However, these explanations are oversimplifications that result in ethical impasses. This article argues social credit rating should be understood in terms of the commonly human problem of large-scale cooperation. To do so, this paper relies on a cultural evolutionary framework and is an exercise in interpretive pros hen ethical pluralism, attempting to understand how apparently irresolvable cultural differences stem from common human concerns. Wholesale condemnation of SCRC fails to acknowledge the serious, intractable nature of problems resulting from a lack of trust in China. They take for granted the existence of institutions ensuring largescale, anonymous cooperation characteristic of - but somewhat unique to - Western Educated Industrialized Rich and Democratic (WEIRD) cultures. Because of its history and rapid development, China lacks the institutions necessary to ensure such cooperation, and because of anti-social punishment, social credit rating might be one of the few ways to ensure cooperation at this scale. The point is not to defend social credit rating in general, but to raise the possibility of its defense in China and show one way this would be done.

Fatigue life evolution of steel wire considering corrosion-fatigue coupling effect: Analytical model and application

  • Yang Ding;Xiao-Wei Ye;Hong Zhang;Xue-Song Zhang
    • Steel and Composite Structures
    • /
    • 제50권3호
    • /
    • pp.363-374
    • /
    • 2024
  • The fatigue life of steel wire is affected not only by fatigue load, but also by corrosion environment in service period. Specially, the corrosion pit will lead to stress concentration on the surface of steel wire inducing the formation of fatigue cracks, and the fatigue cracks will accelerate the corrosion process. Therefore, the corrosion fatigue of steel wire is a coupling effect. In this study, the corrosion-fatigue coupling life curve is derived with considering corrosion-fatigue pitting stage, corrosion-fatigue short crack stage and corrosion-fatigue long crack stage. In addition, the stress concentration factors of different corrosion pits are calculated by COMSOL software. Furthermore, the effect of corrosion environment factors, that is, corrosion rate, corrosion pit morphology, frequency and action factor of fatigue load, on fatigue life of steel wire is analyzed. And then, the corrosion-fatigue coupling life curve is compared with the fatigue life curve and fatigue life curve with pre-corrosion. The result showed that the anti-fatigue performance of the steel wire with considering corrosion-fatigue coupling is 68.08% and 41.79% lower than fatigue life curve and fatigue life curve with pre-corrosion. Therefore, the corrosion-fatigue coupling effect should be considered in the design of steel wire.

인체 SIP 단백질에 특이적인 단일클론 항체의 특성 (Characterization of a Monoclonal Antibody Specific to Human Siah-1 Interacting Protein)

  • 윤선영;주종혁;김주헌;강호범;김진숙;이영희;권두한;김창남;최인성;김재화
    • IMMUNE NETWORK
    • /
    • 제4권1호
    • /
    • pp.23-30
    • /
    • 2004
  • Background: A human orthologue of mouse S100A6-binding protein (CacyBP), Siah-1-interacting protein (SIP) had been shown to be a component of novel ubiquitinylation pathway regulating $\beta$-catenin degradation. The role of the protein seems to be important in cell proliferation and cancer evolution but the expression pattern of SIP in actively dividing cancer tissues has not been known. For the elucidation of the role of SIP protein in carcinogenesis, it is essential to produce monoclonal antibodies specific to the protein. Methods: cDNA sequence coding for ORF region of human SIP gene was amplified and cloned into an expression vector to produce His-tag fusion protein. Recombinant SIP protein and monoclonal antibody to the protein were produced. The N-terminal specificity of anti-SIP monoclonal antibody was conformed by immunoblot analysis and enzyme linked immunosorbent assay (ELISA). To study the relation between SIP and colon carcinogenesis, the presence of SIP protein in colon carcinoma tissues was visualized by immunostaining using the monoclonal antibody produced in this study. Results: His-tag-SIP (NSIP) recombinant protein was produced and purified. A monoclonal antibody (Korea patent pending; #2003-45296) to the protein was produced and employed to analyze the expression pattern of SIP in colon carcinoma tissues. Conclusion: The data suggested that anti-SIP monoclonal antibody produced here was valuable for the diagnosis of colon carcinoma and elucidation of the mechanism of colon carcinogenesis.

High Efficiency Binding Aptamers for a Wide Range of Bacterial Sepsis Agents

  • Graziani, Ana Claudia;Stets, Maria Isabel;Lopes, Ana Luisa Kalb;Schluga, Pedro Henrique Caires;Marton, Soledad;Ferreira, Ieda Mendes;de Andrade, Antero Silva Ribeiro;Krieger, Marco Aurelio;Cardoso, Josiane
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권4호
    • /
    • pp.838-843
    • /
    • 2017
  • Sepsis is a major health problem worldwide, with an extremely high rate of morbidity and mortality, partly due to delayed diagnosis during early disease. Currently, sepsis diagnosis requires bacterial culturing of blood samples over several days, whereas PCR-based molecular diagnosis methods are faster but lack sensitivity. The use of biosensors containing nucleic acid aptamers that bind targets with high affinity and specificity could accelerate sepsis diagnosis. Previously, we used the systematic evolution of ligands by exponential enrichment technique to develop the aptamers Antibac1 and Antibac2, targeting the ubiquitous bacterial peptidoglycan. Here, we show that these aptamers bind to four gram-positive and seven gram-negative bacterial sepsis agents with high binding efficiency. Thus, these aptamers could be used in combination as biological recognition elements in the development of biosensors that are an alternative to rapid bacteria detection, since they could provide culture and amplification-free tests for rapid clinical sepsis diagnosis.