DOI QR코드

DOI QR Code

Review on sodium corrosion evolution of nuclear-grade 316 stainless steel for sodium-cooled fast reactor applications

  • Dai, Yaonan (Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan Institute of Technology) ;
  • Zheng, Xiaotao (Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan Institute of Technology) ;
  • Ding, Peishan (Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan Institute of Technology)
  • Received : 2020.12.16
  • Accepted : 2021.05.17
  • Published : 2021.11.25

Abstract

Sodium-cooled fast reactor (SFR) is the preferred technology of the generation-IV fast neutron reactor, and its core body mainly uses nuclear-grade 316 stainless steel. In order to prolong the design life of SFRs to 60 years and more, it is necessary to summarize and analyze the anti-corrosion effect of nuclear grade 316 stainless steel in high temperature sodium environment. The research on sodium corrosion of nuclear grade 316 stainless steel is mainly composed of several important factors, including the microstructure of stainless steel (ferrite layer, degradation layer, etc.), the trace chemical elements of stainless steel (Cr, Ni and Mo, etc) and liquid impurity elements in sodium (O, C and N, etc), carburization and mechanical properties of stainless steel, etc. Through summarizing and constructing the sodium corrosion rate equations of nuclear grade 316 stainless steel, the stainless steel loss of thickness can be predicted. By analyzing the effects of temperature, oxygen content in sodium and velocity of sodium on corrosion rate, the basis for establishing integrity evaluation standard of SFR core components with sodium corrosion is provided.

Keywords

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (51975424).

References

  1. K. Aoto, P. Dufour, Y. Hongyi, et al., A summary of sodium-cooled fast reactor development, Prog. Nucl. Energy 77 (2014) 247-265. https://doi.org/10.1016/j.pnucene.2014.05.008
  2. Chunguang Yan, Yaping Li, Mingzheng Wang, Type 316 austenitic steels for reactor vessel and internals in sodium fast reactors and their creep rupture properties, J. Iron Steel Res. 30 (12) (2018) 935-942.
  3. S.H. Seong, et al., Preliminary conceptual study for safety parameter display system of PGSFR, in: Transactions of the Korean Nuclear Society Autumn Meeting, 2013, pp. 24-25. Gyeongju, Korea.
  4. T. Sofu, A review of inherent safety characteristics of metal alloy sodiumcooled fast reactor fuel against postulated accidents, Nuclear Engineering & Technology 47 (3) (2015) 227-239. https://doi.org/10.1016/j.net.2015.03.004
  5. M. Simnad, Overview of fast breeder reactors, Energy 23 (7-8) (1998) 523-531. https://doi.org/10.1016/S0360-5442(97)00097-2
  6. T. Asayama, S. Takaya, Implementation of reliability evaluation into JSME fast reactor codes: 1- current status and path forward, in: Proceedings of the 2016 24th International Conference on Nuclear Engineering, ICONE24-60936, Charlotte, North Carolina, 2016.
  7. J. Crank, The Mathematics of Diffusion, Oxford university press, Oxford, 1975.
  8. N. Sivai Bharasi, M.G. Pujar, C.R. Das, et al., Microstructure, corrosion and mechanical properties characterization of AISI type 316L(N) stainless steel and modified 9Cr-1Mo steel after 40,000 h of dynamic sodium exposure at 525 ℃, J. Nucl. Mater. (2019) 1-50.
  9. S. Rajendran Pillai, H.S. Khatak, J.B. Gnanamoorthy, et al., Mass transfer and morphological changes in AISI 316 stainless steel in high temperature flowing sodium, Mater. Sci. Technol. 13 (11) (1997) 937-944. https://doi.org/10.1179/mst.1997.13.11.937
  10. D. Hahn, et al., Current status of collaboration for GIF sodium-cooled fast reactor system, in: GIF Symposium Proceedings, 2012 Annual Report, San Diego, California, USA, 2012.
  11. Asayama Tai, Yugi Nagae, Takashi Wakai, et al., Structural materials and code development for Japanese sodium-cooled fast reactors, Pressure Technology 5 (2014) 296-302.
  12. S. Ravi, K. Laha, M.D. Mathew, et al., Influence of flowing sodium on creep deformation and rupture behaviour of 316L(N) austenitic stainless steel, J. Nucl. Mater. 427 (1-3) (2012) 174-180. https://doi.org/10.1016/j.jnucmat.2012.04.030
  13. F. Feria, L.E. Herranz, Critical review of data and correlations describing key clad thermo-mechanical processes under SFR transient conditions: alternative modelling, Prog. Nucl. Energy 97 (2017) 90-98. https://doi.org/10.1016/j.pnucene.2016.12.010
  14. I.P. Serre, O. Hamdane, J.B. Vogt, Comparative study of the behavior of different highly alloyed steels in liquid sodium, Nucl. Eng. Des. 320 (2017) 17-27. https://doi.org/10.1016/j.nucengdes.2017.05.016
  15. B. Barkia, J.L. Courouau, E. Perrin, et al., Investigation of crack propagation resistance of 304L, 316L and 316L(N) austenitic steels in liquid sodium, J. Nucl. Mater. 507 (2018) 15-23. https://doi.org/10.1016/j.jnucmat.2018.04.036
  16. T. Furukawa, S. Kato, E. Yoshida, Compatibility of FBR materials with sodium, J. Nucl. Mater. 392 (2) (2009) 249-254. https://doi.org/10.1016/j.jnucmat.2009.03.003
  17. M.D. Mathew, S. Latha, K. Bhanu Sankara Rao, An assessment of creep strength reduction factors for 316L(N) SS welds, Mater. Sci. Eng. 456 (2007) 28. https://doi.org/10.1016/j.msea.2006.11.087
  18. B. Long, F. Tavassoli, B. Raj, et al., IAEA Working Material on Benchmarking of Advanced Materials Pre-selected for Innovative Nuclear Reactors, s. n., Vienna, 2010.
  19. Qian Wang, Bing Long, Xitao Wang, et al., Study on research and development system of materials for sodium-cooled fast reactor technology, J. Iron Steel Res. 26 (9) (2014) 1-6.
  20. R.C. Moore, T.M. Conboy, Metal Corrosion in a Supercritical Carbon Dioxide-Liquid Sodium Power Cycle, Office of Scientific & Technical Information Technical Reports, Sandia National Laboratories, United States, 2012.
  21. N. Sivai Bharasi, M.G. Pujar, K. Thyagarajan, et al., Changes in microstructural and mechanical properties of AISI type 316LN stainless steel and modified 9Cr-1Mo steel on long-term exposure to flowing sodium in a Bi-metallic sodium loop, Metall. Mater. Trans. 46 (12) (2015) 6065-6080. https://doi.org/10.1007/s11661-015-3147-2
  22. Yuhang Niu, Xiuan Zhou, Dongliang Hu, Material changes and technology features of sodium cooled fast reactor, Mod. Phys. 7 (4) (2017) 85-93. https://doi.org/10.12677/MP.2017.74010
  23. C. Sudha, N. Sivai Bharasi, R. Anand, et al., Carburization behavior of AISI 316LN austenitic stainless steel - experimental studies and modeling, J. Nucl. Mater. 402 (2010) 186-195. https://doi.org/10.1016/j.jnucmat.2010.05.023
  24. H. Ohshima, S. Kubo, Sodium-cooled Fast Reactor, Handbook of Generation IV Nuclear Reactors, 2016, pp. 97-118.
  25. Mi Xu, Yihong Yang, Safety properties of sodium-cooled fast reactors, Physics 9 (2016) 561-568.
  26. Jiarun He, Zhengrong Gou, Development status of sodium cooled fast reactor, Dongfang Electric Review 3 (2013) 36-43.
  27. Shumin Yan, World sodium-cooled fast reactor operation experience, Foreign Nuclear News 10 (2010) 11-15.
  28. Chenchang Yan, The current status of sodium-cooled fast reactor standards and the preliminary assumptions of system pre-research, Research and Discussion 1 (2012) 2-7.
  29. Shumin Yan, Russia Officially Starts MBIR Construction, Foreign Nuclear News, 2015, p. 20.
  30. Jacques Rouault, P. Chellapandi, et al., Sodium Fast Reactor Design: Fuels, Neutronics, Thermal-Hydraulics, Structural Mechanics and Safety, Handbook of Nuclear Engineering, 2010.
  31. C. Fazio, F. Balbaud, Corrosion phenomena induced by liquid metals in Generation IV reactors, in: Pascal Yvon. Structural Materials for Generation IV Nuclear Reactors, Woodhead Publishing., 2017, pp. 23-74.
  32. P. Anzieu, J.-P. Serpantie, D. Verwaerde, Ph Dufour, Ph Martin, A program on innovative SFR in France, in: Proceedings of ICAPP2007, Nice Acropolis, France, 2007, pp. 13-18.
  33. M.D. Mathew, Evolution of creep resistant 316 stainless steel for sodium cooled fast reactor applications, Trans. Indian Inst. Met. 63 (2-3) (2010) 151-158. https://doi.org/10.1007/s12666-010-0021-1
  34. Takashi Onizawa, Ryuta Hashidate, Development of creep property equations of 316FR stainless steel and Mod.9Cr-1Mo steel for sodium-cooled fast reactor to achieve 60-year design life, Mechanical Engineering Journal 1 (6) (2019) 1-15.
  35. S. Rajendran Pillai, H.S. Khatak, Corrosion of Austenitic Stainless Steel in Liquid Sodium, Corrosion of Austenitic Stainless Steels, 2002, pp. 241-264.
  36. Matthieu Rivollier, J.L. Courouau, Marie-Laurence Giorgi, Francois Jomard, Michel Tabarant, Cecile Blanc, Sylvain Vaubaillon, Study of the Oxidation Mechanisms of 316LN Steel in Liquid Sodium, ICAPP, Nice, France, 2015.
  37. M. Rivollier, J. Courouau, M. Tabarant, C. Blanc, M. Giorgi, Oxidation of 316L(N) stainless steel in liquid sodium at 650℃, J. Nucl. Mater. 500 (2018) 337. https://doi.org/10.1016/j.jnucmat.2017.12.037
  38. J.L. Courouau, F. Balbaud-Cel erier, V. Lorentz, T. Dufrenoy, Corrosion by liquid sodium of materials for sodium fast reactors: the CORRONa testing device, in: International Congress on Advances in Nuclear Power Plants (ICAPP 11), 2011, pp. 2-5. Nice, France.
  39. T. Yonezawa, T. Imazu, T. Saida, et al., Effect of metallurgical factors on the corrosion and mass transfer of 304 stainless steel in liquid sodium, J. Jpn. Inst. Metals 44 (1980) 223-229. https://doi.org/10.2320/jinstmet1952.44.3_223
  40. S. Rajendran Pillai, N. Sivai Bharasi, H.S. Khatak, et al., Corrosion behavior and tensile properties of AISI 316LN stainless steel exposed to flowing sodium at 823 K, J. Mater. Eng. Perform. 9 (1) (2000) 98-102. https://doi.org/10.1361/105994900770346349
  41. N. Sivai Bharasi, K. Thyagarajan, H. Shaikh, et al., Evaluation of microstructural, mechanical properties and corrosion behavior of AISI type 316LN stainless steel and modified 9Cr-1Mo steel exposed in a dynamic bimetallic sodium loop at 798K (525℃) for 16000 hours, Metall. Mater. Trans. 43 (2) (2012) 561-571. https://doi.org/10.1007/s11661-011-0884-8
  42. N. Sivai Bharasi, K. Thyagarajan, H. Shaikh, et al., Effect of flowing sodium on corrosion and tensile properties of AISI type 316LN stainless steel at 823 K, J. Nucl. Mater. 377 (2) (2008) 378-384. https://doi.org/10.1016/j.jnucmat.2008.01.032
  43. T. Gnanasekaran, R.K. Dayal, Baldev Raj, Liquid metal corrosion in nuclear reactor and accelerator driven systems, Nuclear corrosion science and engineering (2012) 301-328.
  44. Erik Camposilvan, Marc Anglada, Micropillar compression inside zirconia degraded layer, J. Eur. Ceram. Soc. 14 (2015) 4051-4058.
  45. C. Sudhaa, N. Sivai Bharasib, R. Ananda, H. Shaikhb, R.K. Dayalb, M. Vijayalakshmi, Carburization behavior of AISI 316LN austenitic stainless steel-Experimental studies and modeling, J. Nucl. Mater. 402 (2) (2010) 186-195. https://doi.org/10.1016/j.jnucmat.2010.05.023
  46. E. Yoshida, S. Kato, Y. Wada, Post- Corrosion and Metallurgical Analyses of Sodium Piping Materials Operated for 100,000 Hours, Liquid Metal Systems, New York, 1995, pp. 55-66.
  47. B.H. Kolster, Discussion of sodium corrosion and mass transfer, in: H.U. Borgstedt (Ed.), Material Behaviour and Physical Chemistry in Liquid Metal Systems, Plenum Press, 1982, pp. 489-491.
  48. B. Weiss, R. Stickler, Phase instabilities during high temperature exposure of 316 austenitic stainless steel, Metallurgical Transactions 3 (4) (1972) 851. https://doi.org/10.1007/BF02647659
  49. Chunjuan Shao, Guofa Mi, Lei Xu, et al., Effect of cooling rate on precipitation phase and intergranular corrosion of 316H large forging after solution treatment, Heat Treat. Metals 43 (10) (2018) 60-66.
  50. D. Peckner, I.M. Bernstein, Handbook of stainless steels, Br. Corrosion J. 13 (2) (1977) 56. New York.
  51. E. Veleckis, K.E. Anderson, F.A. Cafasso, H.M. Feder, Proc. Internat. Conf. On Sodium Technology and Large Fast Reactor Design, USAEC Report ANL-7520, Argonne, IL, 1968, p. 295, part I.
  52. A.L. Thorley, Anthony Blundell, J.A. Bradsley, Mass transfer of stainless steel in pumped sodium loops and its effect on microstructure, in: H.U. Borgstedt (Ed.), Material Behaviour and Physical Chemistry in Liquid Metal Systems, Plenum Press, New York, US, 1982, pp. 5-18.
  53. T. Jayakumar, A.K. Bhaduri, M.D. Mathew, et al., Nitrogen enhanced 316LN austenitic stainless steel for sodium cooled fast reactors, Adv. Mater. Res. 794 (2013) 670-680. https://doi.org/10.4028/www.scientific.net/amr.794.670
  54. E. Schmucker, C. Petitjean, L. Martinelli, P.-J. Panteix, B. Lagha, M. Vilasi, Oxidation of Ni-Cr alloy at intermediate oxygen pressures, II. Towards the lifetime prediction of alloys, Corrosion Science 111 (2016) 467-473. https://doi.org/10.1016/j.corsci.2016.05.024
  55. V. Ganesan, V. Ganesan, H.U. Borgstedt, Generation of surface degraded layer on austenitic stainless steel piping exposed to flowing sodium in a loop: inter comparison of long term exposure data, J. Nucl. Mater. 334 (2004) 217-221. https://doi.org/10.1016/j.jnucmat.2004.04.350
  56. Liu Qi, Hua Sun, Huiqin Yin, Lili Guo, et al., Corrosion behaviour of 316H stainless steel in molten FLiNaK eutectic salt containing graphite particles, Corrosion Sci. 160 (2019) 1-7.
  57. T.B. Lindemer, T.M. Besmann, C.E. Johnson, Thermodynamic review and calculations-alkali-metal oxide systems with nuclear fuels, fission products, and structural materials, J. Nucl. Mater. 100 (1981) 178-226. https://doi.org/10.1016/0022-3115(81)90533-X
  58. O.M. Sreedhran, J.B. Gnanamoorthy, Oxygen potentials in alkali metals and oxygen distribution coefficients between alkali and structural metals - an assessment, J. Nucl. Mater. 89 (1980) 113-128. https://doi.org/10.1016/0022-3115(80)90015-X
  59. T. Suzuki, I. Mutoh, Compatibility of high-purity Fe-(5 to 15) Cr-1Mo ferritic steels in a sodium environment, J. Nucl. Mater. 149 (1) (1987) 41-50. https://doi.org/10.1016/0022-3115(87)90496-X
  60. S. Rajendran Pillai, H.S. Khatak, J.B. Gnanamoorthy, Formation of NaCrO2 in sodium systems of fast reactors and its consequence on the carbon potential, J. Nucl. Mater. 224 (1995) 17-24. https://doi.org/10.1016/0022-3115(95)00038-0
  61. R.A. Perkins, J.R. Padgett, N.K. Tunali, Tracer diffusion of 59Fe and 51Cr in Fe-17 Wt Pct Cr-12 Wt Pct Ni austenitic alloy, Metallurgical Transactions 4 (11) (1973) 2535-2540. https://doi.org/10.1007/BF02644255
  62. A.F. Smith, The diffusion of chromium in type 316 stainless steel, Met. Sci. 9 (1) (1975) 375-378. https://doi.org/10.1179/030634575790444270
  63. K. Natesan, T.F. Kassner, Thermodynamic and kinetic aspects of carbon transport in sodium-steel systems, J. Nucl. Mater. 37 (2) (1970) 223-235. https://doi.org/10.1016/0022-3115(70)90087-5
  64. B. Longson, A.W. Thorley, Solubility of carbon in sodium, J. Appl. Chem. 20 (1970) 370-379.
  65. Wei Liu, Baixiang Dou, Cheng Zhao, Study on effect of carburizing on surface properties of AISI 316 stainless steel, Heat Treatment Technology and Equipment 33 (5) (2012) 32-34.
  66. F.D.S. Severo, C.J. Scheuer, R.P. Cardoso, S.F. Brunatto, Cavitation erosion resistance enhancement of martensitic stainless steel via low-temperature plasma carburizing, Wear 428 (2019) 162-166. https://doi.org/10.1016/j.wear.2019.03.009
  67. C.K. Mathews, T. Gnanasekharan, S.R. Pillai, The behaviour of carbon in sodium-steel systems, Trans. Indian Inst. Met. 40 (1987) 89-103.
  68. R.B. Snyder, K. Natesan, T.F. Kassner, Kinetics of carburization-decarburization process of austenitic stainless steels in sodium, J. Nucl. Mater. 50 (1974) 259-274. https://doi.org/10.1016/0022-3115(74)90096-8
  69. A.A. Guimaraes, P.R. Mei, Precipitation of carbides and sigma phase in AISI ~ type 446 stainless steel under working conditions, J. Mater. Process. Technol. 155 (2004) 1681-1689. https://doi.org/10.1016/j.jmatprotec.2004.04.341
  70. A.V. Karpov, M.K. Kononyuk, L.I. Mamaev, YuL. Kulikov, Compatibility of structural materials with sodium according to data from the experience gained in 40 years of operation of the BR-5/BR-10 Reactor, Atom. Energy 91 (2001) 951-955. https://doi.org/10.1023/A:1014274009267
  71. Ji-Hyun Yoon, Young-Chun Kim, Seokmin Hong, et al., Inelastic cyclic deformation behaviors of type 316H stainless steel for reactor pressure vessel of sodium-cooled fast reactor at elevated temperatures, Korean J. Met. Mater. 53 (10) (2015) 681~687. https://doi.org/10.3365/kjmm.2015.53.10.681
  72. B. Barkia, T. Auger, J.L. Courouau, et al., Wetting by liquid sodium and fracture path analysis of sodium induced embrittlement of 304L stainless steel, J. Mater. Res. 33 (2) (2017) 1-9.
  73. Asayama Tai, Yasuhiro Abe, Noriko Miyaji, et al., Evaluation procedures for irradiation effects and sodium environmental effects for the structural design of Japanese fast breeder reactors, J. Pressure Vessel Technol. 123 (2001) 49-57. https://doi.org/10.1115/1.1338119
  74. C. Pallotta, N.D.E. Cristofano, et al., The influence of temperature and the role of chromium in the passive layer in relation to pitting corrosion of 316 stainless steel in NaCl solution, ChemInform 31 (10) (1986) 1265-1270.
  75. A.F. Padilha, P.R. Rios, Decomposition of austenite in austenitic stainless steels, ISIJ Int. 42 (2002) 325-337. https://doi.org/10.2355/isijinternational.42.325
  76. M.P. Mishra, H.U. Borgstedt, G. Frees, et al., Microstructural aspects of creeprupture life of Type 316L(N) stainless steel in liquid sodium environment, J. Nucl. Mater. 200 (1993) 244. https://doi.org/10.1016/0022-3115(93)90335-V
  77. P.N. Flagella, J.A. Denne, R.A. Leasure, Effects of sodium-preexposure on the creep-rupture properties of Type 316 stainless steel in flowing sodium, in: J.M. Mahlke (Ed.), Proceedings of the Second International Conference on Liquid Metal Technology in Energy Production, 1980, pp. 19-50.
  78. T. Jayakumar, M.D. Mathew, K. Laha, R. Sandhya, Materials development for fast reactor applications, Nucl. Eng. Des. 265 (2013) 1175-1180. https://doi.org/10.1016/j.nucengdes.2013.05.001
  79. Y.Q. Wang, M.W. Spindler, C.E. Truman, D.J. Smith, Critical analysis of the prediction of stress relaxation from forward creep of Type 316H austenitic stainless steel, Mater. Des. (2016) 656-668.
  80. Y. Takahashi, H. Shibamoto, K. Inoue, Study on creep-fatigue life prediction methods for low-carbon nitrogen-controlled 316 stainless steel (316FR), Nucl. Eng. Des. 238 (2) (2008) 322-335. https://doi.org/10.1016/j.nucengdes.2006.09.017
  81. F.R. Larso, Miller, Time temperature relationship for rupture and creep stresses, Transaction of the ASME 5 (1952) 775.
  82. T. Furukawa, E. Yoshida, Material performance in sodium, in: R.J.M. Konings (Ed.), Comprehensive Nuclear Materials, 5, 2012, pp. 327-341.
  83. G.J. Zeman, D.L. Smith, Low cycle fatigue behavior of Types 304 and 316 stainless steel tested in sodium at 550 ℃, Nucl. Technol. 42 (1979) 82. https://doi.org/10.13182/NT79-A32164
  84. S. Date, H. Hiroshi, T. Otani, Y. Takahashi, T. Nakazawa, Study on environmental effect on fatigue and creep-fatigue strength of 316FR stainless steel in sodium at elevated temperature, Nucl. Eng. Des. 238 (2008) 353. https://doi.org/10.1016/j.nucengdes.2006.09.008
  85. T. Furukawa, E. Yoshida, S. Kato, R. Komine, Effect of sodium on mechanical strength of FBR grade Type 316 stainless steel, ASME Press. Vessels Pip. Conf. 373 (1998) 301.
  86. T. Onizawa, Y. Nagae, S. Takaya, et al., Development of 2012 Edition of JSME Code for Design and Construction of Fast Reactors: (2) Development of the Material Strength Standard of 316FR Stainless Steel, ASME 2013 Pressure Vessels and Piping Conference, 2013.
  87. Takashi Onizawa, Yuji Nagae, et al., Development of a material strength standard for Japanese demonstration fast breeder reactor, in: Proceedings of the ASME 2009 Pressure Vessels and Piping Division Conference, PVP2009 Prague, Czech Republic, 2009.
  88. S. Rajendran Pillai, H.S. Khatak, J.B. Gnanamoorthy, Corrosion of AISI type 316 stainless steel in sodium and the assessment of long-term tensile behavior, Mater. Trans. 39 (3) (1998) 370-377. https://doi.org/10.2320/matertrans1989.39.370
  89. Tadashi Suzuki, Isao Mutoh, Steady-state corrosion rate of type 316 stainless steel in sodium in a non-isothermal loop system, J. Nucl. Mater. 152 (1988) 343-347. https://doi.org/10.1016/0022-3115(88)90348-0
  90. Akira Maruyama, Shigeo Nomura, et al., Recommended equation for corrosion rate of austenitic stainless steels in liquid sodium at elevated temperature, J. Jpn. Atomic Energy Soc. 26 (4) (1984) 327-338. https://doi.org/10.3327/jaesj.26.327
  91. H.W. Lewis, The accident at the Chernobyl' nuclear power plant and its consequences USSR State Committee on the utilization of atomic energy, Environ. Sci. Policy Sustain. Develop. (1986).
  92. Vaidehi Ganesan, Vedaraman Ganesan, Corrosion of annealed AISI 316 stainless steel in sodium environment, J. Nucl. Mater. 256 (1998) 69-77. https://doi.org/10.1016/S0022-3115(98)00041-5
  93. A.W. Thorley, C. Tyzack, Liquid Alkali Metals, BNES, London, 1973, p. 257.
  94. A.W. Thorley, Corrosion and mass transfer behaviour of steel materials in liquid sodium, in: 3 rd Int, Conf. on Liquid Metal Eng and Tech, Oxford, England, 3, 1984, pp. 31-41.
  95. Tadashi Suzuki, Isao Mutoh, Steady-state corrosion rate of type 316 strainless steel in sodium in a non-isothermal loop system, J. Nucl. Mater. 152 (1988) 343-347. https://doi.org/10.1016/0022-3115(88)90348-0
  96. F. Masse, G. Rouviere, Activation, Corrosion and Contamination in Fast Breeder Reactors-Validation of Models with Experimental Data, Liquid Metal Systems, Karlsruhe, Germany, 1995, pp. 35-46.
  97. C. Bagnall, D.C. Jacobs, Relationships for Corrosion of Type 316 Stainless Steel in Liquid Sodium, Westinghouse Advanced Reactors Division, Pittsburgh, PA, 1975. WARD-NA-3045-23.
  98. M.H. Bina, Homogenization heat treatment to reduce the failure of heat resistant steel castings, in metallurgy, Adv. Mater. Process. (2012) 95-115.

Cited by

  1. Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing : Microstructure and synchrotron X-ray diffraction analysis vol.48, pp.no.pb, 2021, https://doi.org/10.1016/j.addma.2021.102428