Browse > Article
http://dx.doi.org/10.1016/j.net.2021.05.021

Review on sodium corrosion evolution of nuclear-grade 316 stainless steel for sodium-cooled fast reactor applications  

Dai, Yaonan (Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan Institute of Technology)
Zheng, Xiaotao (Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan Institute of Technology)
Ding, Peishan (Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan Institute of Technology)
Publication Information
Nuclear Engineering and Technology / v.53, no.11, 2021 , pp. 3474-3490 More about this Journal
Abstract
Sodium-cooled fast reactor (SFR) is the preferred technology of the generation-IV fast neutron reactor, and its core body mainly uses nuclear-grade 316 stainless steel. In order to prolong the design life of SFRs to 60 years and more, it is necessary to summarize and analyze the anti-corrosion effect of nuclear grade 316 stainless steel in high temperature sodium environment. The research on sodium corrosion of nuclear grade 316 stainless steel is mainly composed of several important factors, including the microstructure of stainless steel (ferrite layer, degradation layer, etc.), the trace chemical elements of stainless steel (Cr, Ni and Mo, etc) and liquid impurity elements in sodium (O, C and N, etc), carburization and mechanical properties of stainless steel, etc. Through summarizing and constructing the sodium corrosion rate equations of nuclear grade 316 stainless steel, the stainless steel loss of thickness can be predicted. By analyzing the effects of temperature, oxygen content in sodium and velocity of sodium on corrosion rate, the basis for establishing integrity evaluation standard of SFR core components with sodium corrosion is provided.
Keywords
SFR; Nuclear grade 316 stainless steel; High temperature sodium environment; Sodium corrosion rate;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Matthieu Rivollier, J.L. Courouau, Marie-Laurence Giorgi, Francois Jomard, Michel Tabarant, Cecile Blanc, Sylvain Vaubaillon, Study of the Oxidation Mechanisms of 316LN Steel in Liquid Sodium, ICAPP, Nice, France, 2015.
2 O.M. Sreedhran, J.B. Gnanamoorthy, Oxygen potentials in alkali metals and oxygen distribution coefficients between alkali and structural metals - an assessment, J. Nucl. Mater. 89 (1980) 113-128.   DOI
3 T. Onizawa, Y. Nagae, S. Takaya, et al., Development of 2012 Edition of JSME Code for Design and Construction of Fast Reactors: (2) Development of the Material Strength Standard of 316FR Stainless Steel, ASME 2013 Pressure Vessels and Piping Conference, 2013.
4 Jacques Rouault, P. Chellapandi, et al., Sodium Fast Reactor Design: Fuels, Neutronics, Thermal-Hydraulics, Structural Mechanics and Safety, Handbook of Nuclear Engineering, 2010.
5 Yuhang Niu, Xiuan Zhou, Dongliang Hu, Material changes and technology features of sodium cooled fast reactor, Mod. Phys. 7 (4) (2017) 85-93.   DOI
6 Asayama Tai, Yugi Nagae, Takashi Wakai, et al., Structural materials and code development for Japanese sodium-cooled fast reactors, Pressure Technology 5 (2014) 296-302.
7 Ji-Hyun Yoon, Young-Chun Kim, Seokmin Hong, et al., Inelastic cyclic deformation behaviors of type 316H stainless steel for reactor pressure vessel of sodium-cooled fast reactor at elevated temperatures, Korean J. Met. Mater. 53 (10) (2015) 681~687.   DOI
8 J. Crank, The Mathematics of Diffusion, Oxford university press, Oxford, 1975.
9 Takashi Onizawa, Ryuta Hashidate, Development of creep property equations of 316FR stainless steel and Mod.9Cr-1Mo steel for sodium-cooled fast reactor to achieve 60-year design life, Mechanical Engineering Journal 1 (6) (2019) 1-15.
10 M. Rivollier, J. Courouau, M. Tabarant, C. Blanc, M. Giorgi, Oxidation of 316L(N) stainless steel in liquid sodium at 650℃, J. Nucl. Mater. 500 (2018) 337.   DOI
11 S. Rajendran Pillai, N. Sivai Bharasi, H.S. Khatak, et al., Corrosion behavior and tensile properties of AISI 316LN stainless steel exposed to flowing sodium at 823 K, J. Mater. Eng. Perform. 9 (1) (2000) 98-102.   DOI
12 T. Gnanasekaran, R.K. Dayal, Baldev Raj, Liquid metal corrosion in nuclear reactor and accelerator driven systems, Nuclear corrosion science and engineering (2012) 301-328.
13 E. Yoshida, S. Kato, Y. Wada, Post- Corrosion and Metallurgical Analyses of Sodium Piping Materials Operated for 100,000 Hours, Liquid Metal Systems, New York, 1995, pp. 55-66.
14 Chunjuan Shao, Guofa Mi, Lei Xu, et al., Effect of cooling rate on precipitation phase and intergranular corrosion of 316H large forging after solution treatment, Heat Treat. Metals 43 (10) (2018) 60-66.
15 V. Ganesan, V. Ganesan, H.U. Borgstedt, Generation of surface degraded layer on austenitic stainless steel piping exposed to flowing sodium in a loop: inter comparison of long term exposure data, J. Nucl. Mater. 334 (2004) 217-221.   DOI
16 Liu Qi, Hua Sun, Huiqin Yin, Lili Guo, et al., Corrosion behaviour of 316H stainless steel in molten FLiNaK eutectic salt containing graphite particles, Corrosion Sci. 160 (2019) 1-7.
17 T.B. Lindemer, T.M. Besmann, C.E. Johnson, Thermodynamic review and calculations-alkali-metal oxide systems with nuclear fuels, fission products, and structural materials, J. Nucl. Mater. 100 (1981) 178-226.   DOI
18 T. Suzuki, I. Mutoh, Compatibility of high-purity Fe-(5 to 15) Cr-1Mo ferritic steels in a sodium environment, J. Nucl. Mater. 149 (1) (1987) 41-50.   DOI
19 S. Rajendran Pillai, H.S. Khatak, J.B. Gnanamoorthy, Formation of NaCrO2 in sodium systems of fast reactors and its consequence on the carbon potential, J. Nucl. Mater. 224 (1995) 17-24.   DOI
20 T. Jayakumar, A.K. Bhaduri, M.D. Mathew, et al., Nitrogen enhanced 316LN austenitic stainless steel for sodium cooled fast reactors, Adv. Mater. Res. 794 (2013) 670-680.   DOI
21 E. Schmucker, C. Petitjean, L. Martinelli, P.-J. Panteix, B. Lagha, M. Vilasi, Oxidation of Ni-Cr alloy at intermediate oxygen pressures, II. Towards the lifetime prediction of alloys, Corrosion Science 111 (2016) 467-473.   DOI
22 R.A. Perkins, J.R. Padgett, N.K. Tunali, Tracer diffusion of 59Fe and 51Cr in Fe-17 Wt Pct Cr-12 Wt Pct Ni austenitic alloy, Metallurgical Transactions 4 (11) (1973) 2535-2540.   DOI
23 A.F. Smith, The diffusion of chromium in type 316 stainless steel, Met. Sci. 9 (1) (1975) 375-378.   DOI
24 D. Hahn, et al., Current status of collaboration for GIF sodium-cooled fast reactor system, in: GIF Symposium Proceedings, 2012 Annual Report, San Diego, California, USA, 2012.
25 Asayama Tai, Yasuhiro Abe, Noriko Miyaji, et al., Evaluation procedures for irradiation effects and sodium environmental effects for the structural design of Japanese fast breeder reactors, J. Pressure Vessel Technol. 123 (2001) 49-57.   DOI
26 T. Jayakumar, M.D. Mathew, K. Laha, R. Sandhya, Materials development for fast reactor applications, Nucl. Eng. Des. 265 (2013) 1175-1180.   DOI
27 R.C. Moore, T.M. Conboy, Metal Corrosion in a Supercritical Carbon Dioxide-Liquid Sodium Power Cycle, Office of Scientific & Technical Information Technical Reports, Sandia National Laboratories, United States, 2012.
28 N. Sivai Bharasi, M.G. Pujar, K. Thyagarajan, et al., Changes in microstructural and mechanical properties of AISI type 316LN stainless steel and modified 9Cr-1Mo steel on long-term exposure to flowing sodium in a Bi-metallic sodium loop, Metall. Mater. Trans. 46 (12) (2015) 6065-6080.   DOI
29 C. Sudha, N. Sivai Bharasi, R. Anand, et al., Carburization behavior of AISI 316LN austenitic stainless steel - experimental studies and modeling, J. Nucl. Mater. 402 (2010) 186-195.   DOI
30 H. Ohshima, S. Kubo, Sodium-cooled Fast Reactor, Handbook of Generation IV Nuclear Reactors, 2016, pp. 97-118.
31 Jiarun He, Zhengrong Gou, Development status of sodium cooled fast reactor, Dongfang Electric Review 3 (2013) 36-43.
32 Shumin Yan, World sodium-cooled fast reactor operation experience, Foreign Nuclear News 10 (2010) 11-15.
33 Shumin Yan, Russia Officially Starts MBIR Construction, Foreign Nuclear News, 2015, p. 20.
34 P. Anzieu, J.-P. Serpantie, D. Verwaerde, Ph Dufour, Ph Martin, A program on innovative SFR in France, in: Proceedings of ICAPP2007, Nice Acropolis, France, 2007, pp. 13-18.
35 J.L. Courouau, F. Balbaud-Cel erier, V. Lorentz, T. Dufrenoy, Corrosion by liquid sodium of materials for sodium fast reactors: the CORRONa testing device, in: International Congress on Advances in Nuclear Power Plants (ICAPP 11), 2011, pp. 2-5. Nice, France.
36 T. Yonezawa, T. Imazu, T. Saida, et al., Effect of metallurgical factors on the corrosion and mass transfer of 304 stainless steel in liquid sodium, J. Jpn. Inst. Metals 44 (1980) 223-229.   DOI
37 N. Sivai Bharasi, K. Thyagarajan, H. Shaikh, et al., Evaluation of microstructural, mechanical properties and corrosion behavior of AISI type 316LN stainless steel and modified 9Cr-1Mo steel exposed in a dynamic bimetallic sodium loop at 798K (525℃) for 16000 hours, Metall. Mater. Trans. 43 (2) (2012) 561-571.   DOI
38 N. Sivai Bharasi, K. Thyagarajan, H. Shaikh, et al., Effect of flowing sodium on corrosion and tensile properties of AISI type 316LN stainless steel at 823 K, J. Nucl. Mater. 377 (2) (2008) 378-384.   DOI
39 C. Sudhaa, N. Sivai Bharasib, R. Ananda, H. Shaikhb, R.K. Dayalb, M. Vijayalakshmi, Carburization behavior of AISI 316LN austenitic stainless steel-Experimental studies and modeling, J. Nucl. Mater. 402 (2) (2010) 186-195.   DOI
40 B.H. Kolster, Discussion of sodium corrosion and mass transfer, in: H.U. Borgstedt (Ed.), Material Behaviour and Physical Chemistry in Liquid Metal Systems, Plenum Press, 1982, pp. 489-491.
41 D. Peckner, I.M. Bernstein, Handbook of stainless steels, Br. Corrosion J. 13 (2) (1977) 56. New York.
42 K. Aoto, P. Dufour, Y. Hongyi, et al., A summary of sodium-cooled fast reactor development, Prog. Nucl. Energy 77 (2014) 247-265.   DOI
43 Chunguang Yan, Yaping Li, Mingzheng Wang, Type 316 austenitic steels for reactor vessel and internals in sodium fast reactors and their creep rupture properties, J. Iron Steel Res. 30 (12) (2018) 935-942.
44 S.H. Seong, et al., Preliminary conceptual study for safety parameter display system of PGSFR, in: Transactions of the Korean Nuclear Society Autumn Meeting, 2013, pp. 24-25. Gyeongju, Korea.
45 T. Sofu, A review of inherent safety characteristics of metal alloy sodiumcooled fast reactor fuel against postulated accidents, Nuclear Engineering & Technology 47 (3) (2015) 227-239.   DOI
46 A.L. Thorley, Anthony Blundell, J.A. Bradsley, Mass transfer of stainless steel in pumped sodium loops and its effect on microstructure, in: H.U. Borgstedt (Ed.), Material Behaviour and Physical Chemistry in Liquid Metal Systems, Plenum Press, New York, US, 1982, pp. 5-18.
47 F. Feria, L.E. Herranz, Critical review of data and correlations describing key clad thermo-mechanical processes under SFR transient conditions: alternative modelling, Prog. Nucl. Energy 97 (2017) 90-98.   DOI
48 T. Furukawa, S. Kato, E. Yoshida, Compatibility of FBR materials with sodium, J. Nucl. Mater. 392 (2) (2009) 249-254.   DOI
49 Qian Wang, Bing Long, Xitao Wang, et al., Study on research and development system of materials for sodium-cooled fast reactor technology, J. Iron Steel Res. 26 (9) (2014) 1-6.
50 Mi Xu, Yihong Yang, Safety properties of sodium-cooled fast reactors, Physics 9 (2016) 561-568.
51 Chenchang Yan, The current status of sodium-cooled fast reactor standards and the preliminary assumptions of system pre-research, Research and Discussion 1 (2012) 2-7.
52 C. Fazio, F. Balbaud, Corrosion phenomena induced by liquid metals in Generation IV reactors, in: Pascal Yvon. Structural Materials for Generation IV Nuclear Reactors, Woodhead Publishing., 2017, pp. 23-74.
53 Wei Liu, Baixiang Dou, Cheng Zhao, Study on effect of carburizing on surface properties of AISI 316 stainless steel, Heat Treatment Technology and Equipment 33 (5) (2012) 32-34.
54 B. Barkia, T. Auger, J.L. Courouau, et al., Wetting by liquid sodium and fracture path analysis of sodium induced embrittlement of 304L stainless steel, J. Mater. Res. 33 (2) (2017) 1-9.
55 C. Pallotta, N.D.E. Cristofano, et al., The influence of temperature and the role of chromium in the passive layer in relation to pitting corrosion of 316 stainless steel in NaCl solution, ChemInform 31 (10) (1986) 1265-1270.
56 A.F. Padilha, P.R. Rios, Decomposition of austenite in austenitic stainless steels, ISIJ Int. 42 (2002) 325-337.   DOI
57 M.P. Mishra, H.U. Borgstedt, G. Frees, et al., Microstructural aspects of creeprupture life of Type 316L(N) stainless steel in liquid sodium environment, J. Nucl. Mater. 200 (1993) 244.   DOI
58 P.N. Flagella, J.A. Denne, R.A. Leasure, Effects of sodium-preexposure on the creep-rupture properties of Type 316 stainless steel in flowing sodium, in: J.M. Mahlke (Ed.), Proceedings of the Second International Conference on Liquid Metal Technology in Energy Production, 1980, pp. 19-50.
59 Y.Q. Wang, M.W. Spindler, C.E. Truman, D.J. Smith, Critical analysis of the prediction of stress relaxation from forward creep of Type 316H austenitic stainless steel, Mater. Des. (2016) 656-668.
60 Y. Takahashi, H. Shibamoto, K. Inoue, Study on creep-fatigue life prediction methods for low-carbon nitrogen-controlled 316 stainless steel (316FR), Nucl. Eng. Des. 238 (2) (2008) 322-335.   DOI
61 F.R. Larso, Miller, Time temperature relationship for rupture and creep stresses, Transaction of the ASME 5 (1952) 775.
62 T. Furukawa, E. Yoshida, Material performance in sodium, in: R.J.M. Konings (Ed.), Comprehensive Nuclear Materials, 5, 2012, pp. 327-341.
63 H.W. Lewis, The accident at the Chernobyl' nuclear power plant and its consequences USSR State Committee on the utilization of atomic energy, Environ. Sci. Policy Sustain. Develop. (1986).
64 K. Natesan, T.F. Kassner, Thermodynamic and kinetic aspects of carbon transport in sodium-steel systems, J. Nucl. Mater. 37 (2) (1970) 223-235.   DOI
65 B. Longson, A.W. Thorley, Solubility of carbon in sodium, J. Appl. Chem. 20 (1970) 370-379.
66 Vaidehi Ganesan, Vedaraman Ganesan, Corrosion of annealed AISI 316 stainless steel in sodium environment, J. Nucl. Mater. 256 (1998) 69-77.   DOI
67 A.W. Thorley, C. Tyzack, Liquid Alkali Metals, BNES, London, 1973, p. 257.
68 F.D.S. Severo, C.J. Scheuer, R.P. Cardoso, S.F. Brunatto, Cavitation erosion resistance enhancement of martensitic stainless steel via low-temperature plasma carburizing, Wear 428 (2019) 162-166.   DOI
69 C.K. Mathews, T. Gnanasekharan, S.R. Pillai, The behaviour of carbon in sodium-steel systems, Trans. Indian Inst. Met. 40 (1987) 89-103.
70 R.B. Snyder, K. Natesan, T.F. Kassner, Kinetics of carburization-decarburization process of austenitic stainless steels in sodium, J. Nucl. Mater. 50 (1974) 259-274.   DOI
71 A.A. Guimaraes, P.R. Mei, Precipitation of carbides and sigma phase in AISI ~ type 446 stainless steel under working conditions, J. Mater. Process. Technol. 155 (2004) 1681-1689.   DOI
72 A.V. Karpov, M.K. Kononyuk, L.I. Mamaev, YuL. Kulikov, Compatibility of structural materials with sodium according to data from the experience gained in 40 years of operation of the BR-5/BR-10 Reactor, Atom. Energy 91 (2001) 951-955.   DOI
73 S. Date, H. Hiroshi, T. Otani, Y. Takahashi, T. Nakazawa, Study on environmental effect on fatigue and creep-fatigue strength of 316FR stainless steel in sodium at elevated temperature, Nucl. Eng. Des. 238 (2008) 353.   DOI
74 T. Furukawa, E. Yoshida, S. Kato, R. Komine, Effect of sodium on mechanical strength of FBR grade Type 316 stainless steel, ASME Press. Vessels Pip. Conf. 373 (1998) 301.
75 Takashi Onizawa, Yuji Nagae, et al., Development of a material strength standard for Japanese demonstration fast breeder reactor, in: Proceedings of the ASME 2009 Pressure Vessels and Piping Division Conference, PVP2009 Prague, Czech Republic, 2009.
76 S. Rajendran Pillai, H.S. Khatak, J.B. Gnanamoorthy, Corrosion of AISI type 316 stainless steel in sodium and the assessment of long-term tensile behavior, Mater. Trans. 39 (3) (1998) 370-377.   DOI
77 Tadashi Suzuki, Isao Mutoh, Steady-state corrosion rate of type 316 stainless steel in sodium in a non-isothermal loop system, J. Nucl. Mater. 152 (1988) 343-347.   DOI
78 Akira Maruyama, Shigeo Nomura, et al., Recommended equation for corrosion rate of austenitic stainless steels in liquid sodium at elevated temperature, J. Jpn. Atomic Energy Soc. 26 (4) (1984) 327-338.   DOI
79 Tadashi Suzuki, Isao Mutoh, Steady-state corrosion rate of type 316 strainless steel in sodium in a non-isothermal loop system, J. Nucl. Mater. 152 (1988) 343-347.   DOI
80 F. Masse, G. Rouviere, Activation, Corrosion and Contamination in Fast Breeder Reactors-Validation of Models with Experimental Data, Liquid Metal Systems, Karlsruhe, Germany, 1995, pp. 35-46.
81 C. Bagnall, D.C. Jacobs, Relationships for Corrosion of Type 316 Stainless Steel in Liquid Sodium, Westinghouse Advanced Reactors Division, Pittsburgh, PA, 1975. WARD-NA-3045-23.
82 M. Simnad, Overview of fast breeder reactors, Energy 23 (7-8) (1998) 523-531.   DOI
83 T. Asayama, S. Takaya, Implementation of reliability evaluation into JSME fast reactor codes: 1- current status and path forward, in: Proceedings of the 2016 24th International Conference on Nuclear Engineering, ICONE24-60936, Charlotte, North Carolina, 2016.
84 E. Veleckis, K.E. Anderson, F.A. Cafasso, H.M. Feder, Proc. Internat. Conf. On Sodium Technology and Large Fast Reactor Design, USAEC Report ANL-7520, Argonne, IL, 1968, p. 295, part I.
85 N. Sivai Bharasi, M.G. Pujar, C.R. Das, et al., Microstructure, corrosion and mechanical properties characterization of AISI type 316L(N) stainless steel and modified 9Cr-1Mo steel after 40,000 h of dynamic sodium exposure at 525 ℃, J. Nucl. Mater. (2019) 1-50.
86 S. Rajendran Pillai, H.S. Khatak, J.B. Gnanamoorthy, et al., Mass transfer and morphological changes in AISI 316 stainless steel in high temperature flowing sodium, Mater. Sci. Technol. 13 (11) (1997) 937-944.   DOI
87 S. Ravi, K. Laha, M.D. Mathew, et al., Influence of flowing sodium on creep deformation and rupture behaviour of 316L(N) austenitic stainless steel, J. Nucl. Mater. 427 (1-3) (2012) 174-180.   DOI
88 I.P. Serre, O. Hamdane, J.B. Vogt, Comparative study of the behavior of different highly alloyed steels in liquid sodium, Nucl. Eng. Des. 320 (2017) 17-27.   DOI
89 B. Barkia, J.L. Courouau, E. Perrin, et al., Investigation of crack propagation resistance of 304L, 316L and 316L(N) austenitic steels in liquid sodium, J. Nucl. Mater. 507 (2018) 15-23.   DOI
90 B. Long, F. Tavassoli, B. Raj, et al., IAEA Working Material on Benchmarking of Advanced Materials Pre-selected for Innovative Nuclear Reactors, s. n., Vienna, 2010.
91 M.D. Mathew, Evolution of creep resistant 316 stainless steel for sodium cooled fast reactor applications, Trans. Indian Inst. Met. 63 (2-3) (2010) 151-158.   DOI
92 S. Rajendran Pillai, H.S. Khatak, Corrosion of Austenitic Stainless Steel in Liquid Sodium, Corrosion of Austenitic Stainless Steels, 2002, pp. 241-264.
93 Erik Camposilvan, Marc Anglada, Micropillar compression inside zirconia degraded layer, J. Eur. Ceram. Soc. 14 (2015) 4051-4058.
94 M.D. Mathew, S. Latha, K. Bhanu Sankara Rao, An assessment of creep strength reduction factors for 316L(N) SS welds, Mater. Sci. Eng. 456 (2007) 28.   DOI
95 M.H. Bina, Homogenization heat treatment to reduce the failure of heat resistant steel castings, in metallurgy, Adv. Mater. Process. (2012) 95-115.
96 B. Weiss, R. Stickler, Phase instabilities during high temperature exposure of 316 austenitic stainless steel, Metallurgical Transactions 3 (4) (1972) 851.   DOI
97 A.W. Thorley, Corrosion and mass transfer behaviour of steel materials in liquid sodium, in: 3 rd Int, Conf. on Liquid Metal Eng and Tech, Oxford, England, 3, 1984, pp. 31-41.
98 G.J. Zeman, D.L. Smith, Low cycle fatigue behavior of Types 304 and 316 stainless steel tested in sodium at 550 ℃, Nucl. Technol. 42 (1979) 82.   DOI