Browse > Article
http://dx.doi.org/10.7314/APJCP.2014.15.12.4753

Biotoxins for Cancer Therapy  

Liu, Cui-Cui (Department of Scientific Research, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine)
Yang, Hao (Department of Scientific Research, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine)
Zhang, Ling-Ling (Department of Scientific Research, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine)
Zhang, Qian (Department of Scientific Research, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine)
Chen, Bo (Department of Scientific Research, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine)
Wang, Yi (Department of Scientific Research, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.15, no.12, 2014 , pp. 4753-4758 More about this Journal
Abstract
In recent times, a number of studies have provided evidence that biotoxins present great potential as antitumor agents, such as snake venom, bee venom, some bacteria toxins and plant toxins, and thus could be used as chemotherapeutic agents against tumors. The biodiversity of venoms and toxins make them a unique source from which novel anticancer agent may be developed. Biotoxins, also known as natural toxins, include toxic substances produced by plants, animals and microorganisms. Here, we systematically list representative biological toxins that have antitumor properties, involving animal toxins, plant toxins, mycotoxins as well as bacterial toxins. In this review, we summarize the current knowledge involving biotoxins and the active compounds that have anti-cancer activity to induce cytotoxic, antitumor, immunomodulatory, and apoptotic effects in different tumor cells in vivo or in vitro. We also show insights into the molecular and functional evolution of biotoxins.
Keywords
Biotoxins; venoms; toxins; cancer;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Riede I (2010). Tumor therapy with Amanita phalloides (death cap): stabilization of B-cell chronic lymphatic leukemia. J Altern Complement Med, 16, 1129-32.   DOI   ScienceOn
2 Park MH, Choi MS, Kwak DH, et al (2011). Anti-cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF-$\kappa{B}$. The Prostate, 71, 801-12.   DOI   ScienceOn
3 Polito L, Bortolotti M, Mercatelli D, et al (2013). Saporin-S6: a useful tool in cancer therapy. Toxins, 5, 1698-722.   DOI
4 Kobayashi H, Masumoto J (2010). Endotoxin contamination of Agaricus blazei Murrill extract enhances murine immunologic responses and inhibits the growth of sarcoma 180 implants in vivo. J Environ Pathol Toxicol Oncol, 29, 159-68.   DOI
5 Kollipara PS, Kim JH, Won D, et al (2014). Co-culture with NK-92MI cells enhanced the anti-cancer effect of bee venom on NSCLC cells by inactivation of NF-kappaB. Arch Pharm Res, 37, 379-89.   DOI   ScienceOn
6 Kreitman RJ (2006). Immunotoxins for targeted cancer therapy. AAPS J, 8, E532-51.   DOI
7 Liberio MS, Joanitti GA, Fontes W, et al (2013). Anticancer peptides and proteins: a panoramic view. Protein Pept Lett, 20, 380-91.   DOI
8 Liu S, Yu M, He Y, et al (2008). Melittin prevents liver cancer cell metastasis through inhibition of the Rac1, dependent pathway. Hepatology, 47, 1964-73.   DOI   ScienceOn
9 Lucena SE, Romo K, Suntravat M, et al (2014). Anti-angiogenic activities of two recombinant disintegrins derived from the Mohave and Prairie rattlesnakes. Toxicon, 78, 10-7.   DOI   ScienceOn
10 MacDonald JR, Muscoplat CC, Dexter DL, et al (1997). Preclinical antitumor activity of 6-hydroxymethylacylfulvene, a semisynthetic derivative of the mushroom toxin illudin S. Cancer Res, 57, 279-83.
11 Orsolic N (2012). Bee venom in cancer therapy. Cancer Metastasis Rev, 31, 173-94.   DOI   ScienceOn
12 Hui J, Xiao F, Li H, et al (2011). Inhibiting tumor-cell growth by novel truncated staphylococcal enterotoxin C2 mutant. Sheng Wu Gong Cheng Xue Bao, 27, 891-9.
13 Engedal N, Skotland T, Torgersen ML, et al (2011). Shiga toxin and its use in targeted cancer therapy and imaging. Microb Biotechnol, 4, 32-46.   DOI   ScienceOn
14 Chang CH, Chung CH, Hsu CC, et al (2014). Inhibitory effects of polypeptides derived from snake venom C-type lectin, aggretin, on tumour cell-induced platelet aggregation. J Thromb Haemost, [Epub ahead of print].
15 Diaz-Garcia A1, Morier-Diaz L, Frion-Herrera Y, et al (2013). In vitro anticancer effect of venom from Cuban scorpion Rhopalurus junceus against a panel of human cancer cell lines. J Venom Res, 4, 5-12.
16 Fedorov S, Dyshlovoy S, Monastyrnaya M, et al (2010). The anticancer effects of actinoporin RTX-A from the sea anemone Heteractis crispa (=Radianthus macrodactylus). Toxicon, 55, 811-7.   DOI   ScienceOn
17 Feng W, Tetsuro I, Mitsuzi Y (1995). The antitumor activities of gnidimacrin isolated from Stellera chamaejasme L. Zhonghua Zhong Liu Za Zhi, 17, 24-6.
18 Grant MA, Morelli XJ, Rigby AC (2004). Conotoxins and structural biology: a prospective paradigm for drug discovery. Curr Protein Pept Sci, 5, 235-48.   DOI   ScienceOn
19 Hidalgo M, Izbicka E, Eckhardt SG, et al (1999). Antitumor activity of MGI 114 (6-hydroxymethylacylfulvene, HMAF), a semisynthetic derivative of illudin S, against adult and pediatric human tumor colony-forming units. Anticancer Drugs, 10, 837-44.   DOI
20 Hider RC (1988). Honeybee venom: a rich source of pharmacologically active peptides. Endeavour, 12, 60-5.   DOI   ScienceOn
21 Balamurugan E, Reddy BV, Menon VP (2010). Antitumor and antioxidant role of Chrysaora quinquecirrha (sea nettle) nematocyst venom peptide against Ehrlich ascites carcinoma in Swiss Albino mice. Mol Cell Biochem, 338, 69-76.   DOI
22 Al-Sadoon MK, Rabah DM, Badr G (2013). Enhanced anticancer efficacy of snake venom combined with silica nanoparticles in a murine model of human multiple myeloma: molecular targets for cell cycle arrest and apoptosis induction. Cell Immunol, 284, 129-38.   DOI   ScienceOn
23 Bachran C, Morley T, Abdelazim S, et al (2013). Anthrax toxinmediated delivery of the Pseudomonas exotoxin A enzymatic domain to the cytosol of tumor cells via cleavable ubiquitin fusions. MBio, 4, e00201-13.
24 Badr G, Al-Sadoon MK, Rabah DM, et al (2013). Snake (Walterinnesia aegyptia) venom-loaded silica nanoparticles induce apoptosis and growth arrest in human prostate cancer cells. Apoptosis, 18, 300-14.   DOI   ScienceOn
25 Bandala C, Perez-Santos JL, Lara-Padilla E, et al (2013). Effect of botulinum toxin A on proliferation and apoptosis in the T47D breast cancer cell line. Asian Pac J Cancer Prev, 14 , 891-4.   과학기술학회마을   DOI   ScienceOn
26 Baskar R, Lee KA, Yeo R, et al (2012). Cancer and radiation therapy: current advances and future directions. Int J Med Sci, 9, 193-9.   DOI
27 Bowen CV, DeBay D, Ewart HS, et al (2013). In vivo detection of human TRPV6-rich tumors with anti-cancer peptides derived from soricidin. PLoS One, 8, e58866.   DOI
28 Brigotti M, Arfilli V, Carnicelli D, et al (2013). Shiga toxin 1, as DNA repair inhibitor, synergistically potentiates the activity of the anticancer drug, mafosfamide, on Raji cells. Toxins, 5, 431-44.   DOI
29 Reis LO, Ferreira U, Billis A, et al (2012). Anti-angiogenic effects of the superantigen staphylococcal enterotoxin B and bacillus Calmette-Guerin immunotherapy for nonmuscle invasive bladder cancer. J Urol, 187, 438-45.   DOI   ScienceOn
30 Sadraeian M, Rasoul-Amini S, Mansoorkhani MJ, et al (2013). Induction of antitumor immunity against cervical cancer by protein HPV-16 E7 in fusion with ricin B chain in tumorbearing mice. Int J Gynecol Cancer, 23, 809-14.   DOI   ScienceOn
31 Sandvig K (2001). Shiga toxins. Toxicon, 39, 1629-35.   DOI   ScienceOn
32 Soletti RC, de Faria GP, Vernal J, et al (2008). Potentiation of anticancer-drug cytotoxicity by sea anemone pore-forming proteins in human glioblastoma cells. Anticancer Drugs, 19, 517-25.   DOI   ScienceOn
33 Son DJ, Lee JW, Lee YH, et al (2007). Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol Ther, 115, 246-70.   DOI   ScienceOn
34 Son DJ, Park MH, Chae SJ, et al (2007). Inhibitory effect of snake venom toxin from Vipera lebetina turanica on hormone-refractory human prostate cancer cell growth: induction of apoptosis through inactivation of nuclear factor kappaB. Mol Cancer Ther, 6, 675-83.
35 Stewart JM, Steeves BJ, Vernes K (2009). Paralytic peptide for use in neuromuscular therapy. US, US7485622 B2.
36 Lai D, Visser-Grieve S, Yang X (2012). Tumour suppressor genes in chemotherapeutic drug response. Biosci Rep, 32, 361-74.   DOI   ScienceOn
37 Hong SY, Lee H, You WK, et al (2003). The snake venom disintegrin salmosin induces apoptosis by disassembly of focal adhesions in bovine capillary endothelial cells. Biochem Biophys Res Comm, 302, 502-8.   DOI   ScienceOn
38 Huang T, Gong WH, Li XC, et al (2012). Efficient killing effect of osteosarcoma cells by cinobufacini and cisplatin in combination. Asian Pac J Cancer Prev, 13, 2847-51.   과학기술학회마을   DOI   ScienceOn
39 Huh JE, Baek YH, Lee MH, et al (2010). Bee venom inhibits tumor angiogenesis and metastasis by inhibiting tyrosine phosphorylation of VEGFR-2 in LLC-tumor-bearing mice. Cancer Lett, 292, 98-110.   DOI   ScienceOn
40 Ip SW, Chu YL, Yu CS, et al (2012). Bee venom induces apoptosis through intracellular Ca2+-modulated intrinsic death pathway in human bladder cancer cells. Int J Urol, 19, 61-70.   DOI   ScienceOn
41 Ip SW, Liao SS, Lin SY, et al (2008). The role of mitochondria in bee venom-induced apoptosis in human breast cancer MCF7 cells. In Vivo, 22, 237-45.
42 Jain D, Kumar S (2012). Snake venom: a potent anticancer agent. Asian Pac J Cancer Prev, 13, 4855-60.   과학기술학회마을   DOI   ScienceOn
43 Jakubowski P, Calvete JJ, Eble JA, et al (2013). Identification of inhibitors of alpha2beta1 integrin, members of C-lectin type proteins, in Echis sochureki venom. Toxicol Appl Pharmacol, 269, 34-42.   DOI   ScienceOn
44 Jo M, Park MH, Kollipara PS, et al (2012). Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol Appl Pharmacol, 258, 72-81.   DOI   ScienceOn
45 White J (2005). Snake venoms and coagulopathy. Toxicon, 45, 951-67.   DOI   ScienceOn
46 Swenson S, Costa F, Minea R, et al (2004). Intravenous liposomal delivery of the snake venom disintegrin contortrostatin limits breast cancer progression. Mol Cancer Ther, 3, 499-511.
47 Takai N, Kira N, Ishii T, et al (2012). Bufalin, a traditional oriental medicine, induces apoptosis in human cancer cells. Asian Pac J Cancer Prev, 13, 399-402.   과학기술학회마을   DOI   ScienceOn
48 Wang H, Ke M, Tian Y, et al (2013). BF-30 selectively inhibits melanoma cell proliferation via cytoplasmic membrane permeabilization and DNA-binding in vitro and in B16F10-bearing mice. Eur J Pharmacol, 707, 1-10.   DOI   ScienceOn
49 Wood DP (2014). Re: Diphtheria toxin-epidermal growth factor fusion protein DAB389EGF for the treatment of bladder cancer. J Urol, 191, 556.   DOI   ScienceOn
50 Xie Q, Tang N, Lin Y, et al (2013). Recombinant adenovirus snake venom cystatin inhibits the growth, invasion, and metastasis of B16F10 cells in vitro and in vivo. Melanoma Res, 23, 444-51.   DOI
51 Zhang C, Zhou SS, Feng LY, et al (2013). In vitro anti-cancer activity of chamaejasmenin B and neochamaejasmin C isolated from the root of Stellera chamaejasme L. Acta Pharmacol Sin, 34, 262-70.   DOI
52 Heinen TE, da Veiga AB (2011). Arthropod venoms and cancer. Toxicon, 57, 497-511.   DOI   ScienceOn
53 Butt AJ, Roberts CG, Seawright AA, et al (2006). A novel plant toxin, persin, with in vivo activity in the mammary gland, induces Bim-dependent apoptosis in human breast cancer cells. Mol Cancer Ther, 5, 2300-9.   DOI   ScienceOn
54 Moon DO, Park SY, Heo MS, et al (2006). Key regulators in bee venom-induced apoptosis are Bcl-2 and caspase-3 in human leukemic U937 cells through downregulation of ERK and Akt. Int immunopharmacol, 6, 1796-807.   DOI   ScienceOn
55 Das Gupta S, Debnath A, Saha A, et al (2007). Indian black scorpion (Heterometrus bengalensis Koch) venom induced antiproliferative and apoptogenic activity against human leukemic cell lines U937 and K562. Leuk Res, 31, 817-25.   DOI   ScienceOn