• Title/Summary/Keyword: anti-${\alpha}$-glucosidase

Search Result 178, Processing Time 0.037 seconds

Production of Liquiritigenin with Cell-based Biotransformation and Its Anti-Aging Activity (균사체 생물전환기술을 이용한 리퀘리티게닌 생산과 항노화 활성)

  • Hwang, Hye Jin;Jeong, Sang Chul;Park, Jong Pil
    • KSBB Journal
    • /
    • v.30 no.4
    • /
    • pp.166-174
    • /
    • 2015
  • In this study, an efficient whole cell-based biotransformation for the production of liquiritigenin was developed using Laetiporus sulphureus CS0218 as biocatalyst and aqueous extracts of Glycyrrhiza uralensis as co-substrate, respectively. In order to determine the efficacy of this method, the optimal bioconversion conditions including mycelial growth, three important enzyme activities (${\beta}$-glucosidase, ${\alpha}$-rhamnosidase and ${\beta}$-xylosidase), and apparent viscosity of culture broth were monitored. After optimization, aqueous extracts of G. uralensis were added to the culture medium to directly produce algycone liquiritigenin. By applying this strategy, 67.5% of liquiritin was converted to liquiritigenin at pH 3.0 after 9 days of incubation and finally liquiritigenin was purified from the reaction mixture. And then, their biological activities including anti-oxidant and superoxide dismutase were observed. In fact, purified liquiritigenin was capable of bi-directional functions (i.e., either up-regulation or down-regulation of SIRT1 which is associated with aging). The results indicate that this strategy would be beneficial to produce biologically active liquiritigenin and could be used in pharmaceutical, cosmetic and food applications.

Comparison of Biological Activities of Fermented Codonopsis lanceolata and Fresh Codonopsis lanceolata (생더덕과 발효더덕의 유용생리활성 비교)

  • Kim, Seung-Seop;Ha, Ji-Hye;Jeong, Myoung-Hoon;Ahn, Ju-Hee;Yoon, Won-Byung;Park, Sung-Jin;Seong, Dong-Ho;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.4
    • /
    • pp.280-285
    • /
    • 2009
  • Both fresh Codonopsis lanceolata and lactic acid bacteria fermented Codonopsis lanceolata were extracted with water at $100^{\circ}C$, and tested for anticancer activity using several human cancer cell lines. The fermented extracts inhibited the growth of hepatocellular carcinoma cells up to 90%, compared to 75% for fresh Codonopsis lanceolata. The extracts of cytotoxicity on human normal lung cells (HEK293) were as low as 15%. Especially, human hepatocellular carcinoma cell were more efficiently inhibited than other cells. This extract also inhibited $\alpha$-glucosidase activity up to 60% at 1.0mg/$m{\ell}$. This fermented extracts showed the inhibition potency on tyrosinase by 25% at 1.0mg/$m{\ell}$. From the results, the fermented Codonopsis lanceolata enhanced several biological activities up to $20{\sim}30%$, compared to those from fresh Codonopsis lanceolata. It implies that fermentation process could be one of useful methods of utilizing low quality Codonopsis lanceolata. Because this process could yield high amounts of biologically active compounds by the help of microbial growth.

Mode of Action of Water Soluble β-Glucan from Oat (Avena sativa) on Calorie Restriction Effect In-Vitro and In-Vivo Animal Models (In-Vitro, In-Vivo 동물모델에서 귀리 유래 수용성 베타-글루칸의 칼로리 제한 효과 작용기전 규명)

  • Kang, Hanna;Kim, Se-Chan;Kang, Yong Soo;Kwon, Young-In
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1222-1228
    • /
    • 2017
  • In the current study, we investigated the inhibitory activity of water soluble ${\beta}-glucan$ from oat (Avena sativa) against various digestive enzymes such as ${\alpha}-glucosidase$, sucrase, maltase and glucoamylase. Inhibition of these enzymes involved in the absorption of disaccharide can significantly decrease the post-prandial increase of blood glucose level after a mixed carbohydrate diet. The ${\beta}-glucan$ had the highest documented rate of small intestinal sucrase inhibitory activity (2.83 mg/mL, $IC_{50}$) relevant for potentially managing post-prandial hyperglycemia. Furthermore, we evaluated the effects of ${\beta}-glucan$ on the level of post-prandial blood glucose in animal model. The post-prandial blood glucose levels were tested two hours after sucrose/starch administration, with and without ${\beta}-glucan$ (100, and 500 mg/kg-body weight). The maximum blood glucose levels (Cmax) of ${\beta}-glucan$ administration group were decreased by about 23% (from $219.06{\pm}27.82$ to $190.44{\pm}13.18$, p<0.05) and 10% (from $182.44{\pm}13.77$ to $165.64{\pm}10.59$, p<0.01) in starch and sucrose loading test, respectively, when compared to control in pharmacodynamics study. The ${\beta}-Glucan$ administration significantly lowered the mean, maximum, and minimum level of post-prandial blood glucose at 30 min after meal. In view of the foregoing, it is felt that our findings suggest that ${\beta}-glucan$ from oat serves to reduce post-prandial blood glucose rise secondary to slower absorption of glucose in the small intestine, via carbohydrate hydrolyzing enzymes inhibition.

Anti-Inflammatory and Antidiabetic Effects of Brown Rice (Oryza sativa L.) Extracts (항염증 및 항당뇨 활성에 미치는 현미 추출물의 영향)

  • Cho, Eun-Kyung;Jung, Kyung-Im;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.126-131
    • /
    • 2012
  • Physiological activities of hot water (BRW) and 80% ethanol (BRE) extracts from brown rice were investigated in this study. The highest activity (94.9%) of nitrite reductase was observed for BRE at 1 mg/ml at pH 1.2, while the activity for BRW was about 75.4% under the same conditions. The inhibitory effects of BRW and BRE on xanthine oxidase activity were about 39.0 and 72.9% at 10 mg/ml, respectively. The digestibility of starch was lower for brown rice than for milled rice and the highest inhibition (93.1%) of ${\alpha}$-glucosidase activity occurred with BRE. Superoxide dismutase (SOD)-like activities of BRW and BRE were weakly increased in a dose-dependent manner and were about 56.4 and 44.9% at 10 mg/ml, respectively. The influences of BRW and BRE on alcohol metabolizing activity were determined by measuring the generation of reduced nicotinamide adenine dinucleotide (NADH) by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH). Increases in ADH and ALDH activities were only detected with BRE.

Antioxidant and Physiological Activities of Capsicum annuum Ethanol Extracts (고추 에탄올 추출물의 항산화 효과 및 생리활성에 관한 연구)

  • Kim, Hun-Joong;Hong, Chung-Oui;Nam, Mi-Hyun;Ha, Young-Min;Lee, Kwang-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.6
    • /
    • pp.727-732
    • /
    • 2012
  • The goal of this study is to determine the activities of antioxidants and antiglycation from the extracts of various Capsicum annum (known as pepper) ethanolic extract (CAE). We tested the extracts of Capsicum annum seeds and pericarps using 70% ethanol. The CAE showed antioxidant activities in a 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation assay, 1,1-diphenyl-2-picrylhydrazyl free radical-scavenging assay, ferric-reducing antioxidant power assay, total flavonoid content, and total polyphenol content. Also, the physiological activities of CAE on glycation inhibition activities, anti-${\alpha}$-glucosidase activities, and tyrosinase activities were measured. As a result, green and red Capsicum annuum seeds show higher levels of antioxidant activities. In addition, the physiological activities are also more effective in the seeds than in the plant pericarps. A radar chart proves that antioxidants and physiological activities are more effective coming from the seeds. And the red Capsicum annuum seeds are more effective than the green ones.

Antioxidant Effects of Extracts from Fermented Red Ginseng Added with Medicinal Herbs in STZ-induced Diabetic Rats (약용식물 첨가 발효홍삼 추출물의 Streptozotocin 유발 당뇨쥐에 대한 항산화 효과)

  • Kim, Hyun-Jeong;Lee, Sung-Gyu;Park, Sung-Jin;Yu, Mi-Hee;Lee, Eun-Ju;Lee, Sam-Pin;Lee, In-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.367-372
    • /
    • 2012
  • Antioxidant and anti-hyperglycemic activities of fermented red ginseng added with 5 kinds of medicinal herbs (FRGM) were investigated in vitro. Total polyphenol and total flavonoid contents in FRGM extracts were $22.41{\pm}3.51$ and $16.80{\pm}4.22{\mu}g/mg$, respectively. FRGM extracts were capable of directly scavenging DPPH free radicals ($RC_{50}=95.57{\pm}7.40{\mu}g/mL$), and then showed higher inhibitory activities for ${\alpha}$-glucosidase. This study was also conducted to evaluate the effects of FRGM extracts in streptozotocin (STZ)-induced diabetic (DM) rats. The activities with regards to serum aspartate aminotransferase and alanine aminotransferase were significantly decreased by FRGM extracts compared to those from the STZ group. The hepatic glutathione content depleted by STZ was significantly increased by FRGM extracts, but elevation of lipid peroxide content induced by STZ was significantly decreased by FRGM extracts. The decreased activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase after STZ-treatment were increased through the treatment of FRGM extracts. These results indicated that fermented red ginseng added with medicinal herbs can protect against STZ-induced diabetic rats through its antioxidant properties.

Functional evaluation of marine micro-algae Amphidinium carterae extract (해양 미세조류 Amphidinium carterae 추출물의 기능성 평가)

  • Kim, Hae-Mi;Oh, Hyeonhwa;Jeong, Jong Hoon;Lee, Sang-Cheon;Moon, Hye-Jung;Jeong, Yong-Seob
    • Food Science and Preservation
    • /
    • v.24 no.5
    • /
    • pp.673-679
    • /
    • 2017
  • In this study, the antimicrobial, antioxidant activities and ${\alpha}$-glucosidase inhibitory activities of Amphidinium carterae ethanol extract (AE) was evaluated for using as a functional food ingredient. Chlorella ethanol extract (CE) was used to the comparison as a control. Anticancer activities of the AE and CE were analyzed by HepG2 and HT-29 human cancer cell. The AE showed antimicrobial activities for all tested bacterial strains. Whereas, CE showed antimicrobial activities for several tested bacterial strains only. The CE showed higher total phenolics contents, DPPH and ABTS radical-scavenging activities (47.36 mg/g, 22.42% and 28.58%, respectively) than those of AE (8.88 mg/g, 20.16% and 17.69%, respectively). AE showed anti-diabetic effect on ${\alpha}$-glucosidase inhibitory activity with dose-dependantly manner. The cell viability of AE ($125{\mu}g/mL$) on HepG2 and HT-29 human cancer cells were 38.12% and 11.27%, respectively. It was demonstrated that ethanol was efficient solvent for extracting functional components from A. carterae. These results indicated that AE can be described as a good candidate for using as a functional food ingredient.

Exploration of optimum conditions for production of saccharogenic mixed grain beverages and assessment of anti-diabetic activity (잡곡당화음료 제조 최적 조건 탐색 및 항당뇨 활성 평가)

  • Lee, Jae Sung;Kang, Yun Hwan;Kim, Kyoung Kon;Yun, Yeong Kyeong;Lim, Jun Gu;Kim, Tae Woo;Kim, Dae Jung;Won, Sang Yeon;Bae, Moo Hoan;Choi, Han Seok;Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.47 no.1
    • /
    • pp.12-22
    • /
    • 2014
  • Purpose: This study was conducted to establish the production conditions through optimization of the production process of beverages using Aspergillus oryzae CF1001, and to analyze volatile compounds and antidiabetic activity. Methods: The optimum condition was selected using the response surface methodology (RSM), through a regression analysis with the following independent variables gelatinization temperature (GT, $X_1$), saccharogenic time (ST, $X_2$), and dependent variable; ${\Delta}E$ value (y). The condition with the lowest ${\Delta}E$ value occurred with combined 45 min ST and $50^{\circ}C$ GT. The volatile compounds were analyzed quantitatively by GC-MS. Results: Assessment of antidiabetic activity of saccharogenic mixed grain beverage (SMGB) was determined by measurement of ${\alpha}$-glucosidase inhibition activity, and glucose uptake activity and glucose metabolic protein expression by reverse transcriptase polymerase chain reaction (RT-PCR) and western blot analysis. Results of volatile compounds analysis, 62 kinds of volatile compounds were detected in SMGB. Palmitic acid (9.534% ratio), benzaldehyde (8.948% ratio), benzyl ethyl ether (8.792% ratio), ethyl alcohol (8.35% ratio), and 2-amyl furan (4.826% ratio) were abundant in SMGB. We confirmed that ${\alpha}$-glucosidase inhibition activity, glucose uptake activity, and glucose-metabolic proteins were upregulated by SMGB treatment with concentration dependent manner. Conclusion: Saccharogenic mixed grain beverage (SMGB) showed potential antidiabetic activity. Further studies will be needed in order to improve the taste and functionality of SMGB.

Functional properties of newly bred Picnic apple (Malus pumila Mill.) (신육성 품종인 피크닉 (Picnic; Malus pumila Mill.) 사과의 기능성)

  • Lee, Eun-Ho;Cho, Eun-Bi;Lee, Ji-Yang;Bae, Jin-Hee;Lee, Eun-Chul;Yoo, Jin-Gi;Kang, In-Kyu;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.2
    • /
    • pp.187-193
    • /
    • 2019
  • The newly bred Picnic apple was extracted using water and ethanol for extracting solvent. Each water and ethanol extract showed relatively high phenolic compound of 3.69 and 5.55 mg/g. Each water and ethanol extract of Picnic apple showed 1,1-diphenyl-2-picrylhydrazyl of 88.10 and 88.07%, 2,2'-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) of 98.79 and 97.25%, antioxidant protection factor of 2.07 and 2.00 PF and thiobarbituric acid reactive substances showed anti-oxidation effect of 9.69 and 19.83% all at $100{\mu}g/mL$ phenolics concentration. Therefore extract of Picnic apple can be considered as anti-oxidant for anti-aging. The anti-inflammatory effect (hyaluronidase inhibition) of extract of Picnic apple were 4.62% with water extract and 4.39% with ethanol extract both at $200{\mu}g/mL$ phenolics concentration. Both water and ethanol extract showed low ${\alpha}$-amylase inhibition effect but each showed 67.37 and 79.16% of ${\alpha}$-glucosidase inhibition effect at $200{\mu}g/mL$ phenolics concentration. In anti-wrinkle effect, water extract showed each 23.70 and 66.29% in elastase inhibition and collagenase inhibition and ethanol extract showed 64.83 and 65.70% each. These result show high potential for functional food and cosmetic source. Picnic apple was identified to have various functions of anti-oxidation, anti-inflammation, anti-wrinkle effect, and anti-diabetic effect. Therefore, Picnic apple is qualified as a source for new functional cosmetics and functional foods.

Study of the mechanisms underlying increased glucose absorption in Smilax china L. leaf extract-treated HepG2 cells (청미래덩굴 잎 물추출물이 처리된 HepG2 세포에서의 포도당흡수기전 연구)

  • Kang, Yun Hwan;Kim, Dae Jung;Kim, Kyoung Kon;Lee, Sung Mee;Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.47 no.3
    • /
    • pp.167-175
    • /
    • 2014
  • Purpose: Previous studies have shown that treatment with Smilax china L. leaf extract (SCLE) produces antidiabetic effects due to ${\alpha}$-glucosidase inhibition. In this study, we examined the mechanism underlying these antidiabetic effects by examining glucose uptake in HepG2 cells cultured with SCLE. Methods: Glucose uptake and glucokinase activity were examined using an assay kit. Expression of glucose transporter (GLUT)-2, GLUT-4, and HNF-$1{\alpha}$ was measured by RT-PCR or western blot. Results: Treatment with SCLE resulted in enhanced glucose uptake in HepG2 cells, and this effect was especially pronounced when cells were cultured in an insulin-free medium. SCLE induced an increase in expression of GLUT-2 but not GLUT-4. The increase in the levels of HNF-$1{\alpha}$, a GLUT-2 transcription factor, in total protein extract and nuclear fraction suggest that the effects of SCLE may occur at the level of GLUT-2 transcription. In addition, by measuring the change in glucokinase activity following SCLE treatment, we confirmed that SCLE stimulates glucose utilization by direct activation of this enzyme. Conclusion: These results demonstrate that the potential antidiabetic activity of SCLE is due at least in part to stimulation of glucose uptake and an increase in glucokinase activity, and that SCLE-stimulated glucose uptake is mediated through enhancement of GLUT-2 expression by inducing expression of its transcription factor, HNF-$1{\alpha}$.