• 제목/요약/키워드: antagonistic

검색결과 935건 처리시간 0.03초

Regulation of c-Fos and c-Jun Gene Expression by Lipopolysaccharide and Cytokines in Primary Cultured Astrocytes: Effect of PKA and PKC Pathways

  • Suh Hong-Won;Choi Seong-Soo;Lee Jin-Koo;Lee Han-Kyu;Han Eun-Jung;Lee Jongho
    • Archives of Pharmacal Research
    • /
    • 제27권4호
    • /
    • pp.396-401
    • /
    • 2004
  • The effects of lipopolysaccharide (LPS) and several cytokines or the c-fos and c-jun mRNA expression were examined in primary cultured astrocytes. Either LPS (500 ng/mL) or inter-feron-$\gamma$ (IFN-$\gamma$ 5 ng/mL) alone increased the level of c-fos mRNA (1 h). However, tumor necro-sis factor-$\alpha$ (TNF-$\alpha$; 10 ng/mL) or interleukin-4 (IL-1$\beta$: 5 ng/mL) alone showed no significant induction of the level of c-fos mRNA. TNF-$\alpha$ showed a potentiating effect in the regulation of LPS-induced c-fos mRNA expression, whereas LPS showed an inhibitory action against IFN-Y-induced c-fos mRNA expression. LPS, but not TNF-$\alpha$, IL-1$\beta$ and IFN-$\gamma$, increased the level of c-jun mRNA (1 h). TNF-$\alpha$ and IFN-$\gamma$ showed an inhibitory action against LPS-induced c-jun mRNA expression. Both phorbol 12-myristate 13-acetate (PMA; 2.5 mM) and forskolin (FSK, 5 mM) increased the c-fos and c-jun mRNA expressions. In addition, the level of c-fos mRNA was expressed in an antagonistic manner when LPS was combined with PMA. When LPS was co-treated with either PMA or FSK, it showed an additive interaction for the induction of c-jun mRNA expression. Our results suggest that LPS and cytokines may be actively involved in the regulation of c-fos and c-jun mRNA expressions in primary cultured astrocytes. Moreover, both the PKA and PKC pathways may regulate the LPS-induced c-fos and c-jun mRNA expressions in different ways.

Characterization of a heat-resistant antimicrobial peptide secreted by Bacillus subtilis A405 (Bacillus subtilis A405 균주가 생성하는 내열성 항균 peptide의 특성 검정)

  • Koo, Bon-Sung;Lee, Seung-Bum;Yoon, Sang-Hong;Song, Gae-Kyung;Chung, Dae-Sung;Byun, Myung-Ok;Ryu, Jin-Chang
    • The Korean Journal of Pesticide Science
    • /
    • 제2권3호
    • /
    • pp.28-35
    • /
    • 1998
  • An antimicrobial peptide producing bacterium, Bacillus subtilis A405, was screened and identified among 700 of antagonistic bacteria. The heat-resistant antimicrobial peptide, AMP-405, was purified from the broth culture of B. subtilis A405 through $20{\sim}40%$ ammonium sulfate precipitation and ultrafiltration. The AMP-405 exhibited strong antimicrobial activities against Botrytis cinerea, Cercospora sp., Fusarium oxysporum, Penicillium digitatum, Celletotrichum gloeosporioides, Rhizoctonia solani, Pythium ultimum, Pyricularia oryzae, Escherichia coli, Pseudomonas spp. and Candida albicans. The molecular weight of the peptide was about 3.0 kDa determined by SDS-PAGE, Native-PAGE and Tris-Tricine gradient electrophoresis, and composed of 9 kinds of amino acid such as aspartic acid, glycine, serine, glutamine, valine, leucine, isoleucine, proline, tyrocine. To determine the efficiency of AMP-405 as a potential maintenance of fruits freshness, cherry tomato was srored at $25^{\circ}C$ for 2 weeks after treatment with $50{\mu}g/ml$ of AMP-405 and $10^{5}$ spores/ml of Botrytis cinerea simultaneously. Treatment with AMP-405 resulted in significantly less infection by Botrytis cinerea, than the treatment with tap water as a control.

  • PDF

A Effect of Heavy Metal to Toxicity of Triclosan Focused on Vibrio fischeri Assay (Triclosan의 독성에 중금속이 미치는 영향 - V. fischeri Assay 관련 내용 중심으로 -)

  • Kim, Ji-Sung;Kim, Il-Ho;Lee, Woo-Mi;Lee, Hye-In;Kim, Seok-Gu
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제36권3호
    • /
    • pp.153-161
    • /
    • 2014
  • The purpose of this study is to evaluate effect of heavy metals (i.e., $Cu^{2+}$, $Zn^{2+}$, $Cr^{6+}$, $Cd^{2+}$, $Hg^{2+}$, and $Pb^{2+}$) to toxicity of Triclosan as binary mixture. The individual toxicity and combined toxic effects of Triclosan with heavy metals were evaluated by Vibrio fischeri assay. In individual toxicity, the $Hg^{2+}$ was found to be most toxic followed by Triclosan, $Pb^{2+}$, $Cr^{6+}$, $Cu^{2+}$, $Zn^{2+}$, and $Cd^{2+}$, respectively. To evaluate combined toxic effect, correlation analysis of 'predicted value' calculated by Concentration addition (CA) model and Independent action (IA) model with 'experimental value' were performed based on the toxicity of individual compound. As a result, all of the combinations showed that IA model were more correlated with experimental value than CA model. On the basis of the median effect concentration of combination ($EC_{50mix}$) predicted by IA model, experimental $EC_{50mix}$ of Triclosan + Cu, Triclosan + Zn, Triclosan + Pb, Triclosan + Hg, Triclosan + Cd, and Triclosan + Cr were 191%, 226%, 138%, 137%, 209%, and 138% of $EC_{50mix}$ predicted by IA model, respectively, indicating that all of the combinations produced antagonistic effect.

Isolation and In Vitro Antimicrobial Activity of Low Molecular Phenolic Compounds from Burkholderia sp. MP-1 (Brukholderia sp. MP-1 에서의 페놀화합물의 분리와 항균활성의 측정)

  • Mao, Sopheareth;Jin, Rong-De;Lee, Seung-Je;Kim, Yong-Woong;Kim, In-Seon;Shim, Jae-Han;Park, Ro-Dong;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제39권4호
    • /
    • pp.195-203
    • /
    • 2006
  • An antagonistic strain, Burkholderia MP-1, showed antimicrobial activity against various filamentous plant pathogenic fungi, yeasts and food borne bacteria (Gram-positive and Gram-negative). The nucleotide sequence of the 16S rRNA gene (1491 pb) of strain MP-1 exhibited close similarity (99-100%) with other Burkholderia 16S rRNA genes. Isolation of the antibiotic substances from culture broth was fractionated by ethyl acetate (EtOAc) solvent and EtOAc-soluble acidic fraction. The antibiotic substances were purified through a silica gel, Sephadex LH-20, ODS column chromatography, and high performance liquid chromatography, respectively. Four active substances were identified as phenylacetic acid, hydrocinnamic acid, 4-hydroxyphenylacetic acid and 4-hydroxyphenylacetate methyl ester by gas chromatographic-mass spectrum analysis. The minimum inhibition of concentration (MIC) of each active compound inhibited the growth of the microorganisms tested at 250 to $2500{\mu}g\;ml^{-1}$. The antimicrobial activity of crude acidic fraction at 1 mg of dry weight per 6 mm paper disc was more effective than authentic standard mixture (four active substances were mixed with the same ratio as acidic fraction) over a wide range of bacterial test.

Isolation and Characterization of Lactic Acid Bacteria with Angiotensin-Converting Enzyme Inhibitory and Antioxidative Activities (안지오텐신 전환효소 저해 활성 및 항산화 활성을 가진 젖산균의 분리 및 특성)

  • Park, Sung-Bo;Kim, Jeong-Do;Lee, Na-Ri;Jeong, Jin-Ha;Jeong, Seong-Yun;Lee, Hee-Seob;Hwang, Dae-Youn;Lee, Jong-Sup;Son, Hong-Joo
    • Journal of Life Science
    • /
    • 제21권10호
    • /
    • pp.1428-1433
    • /
    • 2011
  • In this study, we isolated and characterized plant-associated lactic acid bacteria which are able to produce angiotensin-converting enzyme (ACE) inhibitory and antioxidative activities. Five lactic acid bacteria were isolated from plants (grape and leek), a plant-associated fermentative product (Kimchi) and Korean traditional alcohol (Dongdongju). Strains K-1 and K-21 from Kimchi, strain L-5 from leek, strain G-3 from grape, and strain D-3 from Dongdongju were identified as Pediococcus pentosaceus, Lactobacillus plantarum, Weissella cibaria, L. plantarum, and L. brevis, respectively, by 16S rRNA gene analysis. ACE inhibitory activities of isolated strains ranged from 44.3 to 71.9% in the MRS broth. G-3, L-5 and K-1 strains especially showed high ACE inhibitory activities (59.8-98.69%) in the MRS broth containing skim milk. DPPH radical scavenging activities of the strains were in the range of 42.5-82.7%. All strains showed varying levels of resistance in artificial gastric fluid (pH 2.5), retaining viability ranging from 42.2 to 88.1% after 3 hr of incubation. All strains showed high resistance to 0.3% oxgall after 24 hr of incubation; survival rates were in the range of 55.4-112.8%. Isolated strains were found to be antagonistic to some pathogens including Pseudomonas aeruginosa.

Isolation and Identification of a Streptomyces sp. that Produces Antibiotics Against Multidrug - Resistant Acinetobacter baumannii (다제내성 Acinetobacter baumannii의 생장을 억제하는 항생물질을 생산하는 방선균의 분리.동정 및 항균효과)

  • Rhee, Ki-Hyeong
    • Microbiology and Biotechnology Letters
    • /
    • 제39권1호
    • /
    • pp.37-42
    • /
    • 2011
  • I isolated the actinomycete strain KH223 from soil samples collected from the Kye Ryong mountain area. This strain is antagonistic to the multidrug-resistant Acinetobacter baumannii. KH223 was confirmed as belonging to the genus Streptomyces based on the scanning electronmicroscopy(SEM) observations of the diaminopimelicacid(DAP) type and morphological and physiological characteristics. Comparison of the 16S rDNA nucleotide sequences revealed that KH223 has a relationship with Streptomyces galbus. Production of antibiotics by KH223 was most favorable when cultured on a glucose, polypeptone, and yeast extract(PY) medium for 6 days at 27$^{\circ}C$. The supernatant was found to exhibit an antimicrobial effect on various kinds of bacteria and fungi. Particularly, butanol and ethylacetate extracts of KH223 and cyclo(trp-trp) exhibited significant activity against A. baumannii at concentration ranges of 0.8-12.5 ${\mu}g$/mL, 5.0-25 ${\mu}g$/mL and 12.5${\rightarrow}$100 ${\mu}g$/mL, respectively. Moreover, in contrast to cyclo(trp-trp) had shown to activity against Micrococcus luteus JCM 1464 at the concentration of 12.5 ${\mu}g$/mL, the butanol extract of KH223 showed significant activity against Bacillus subtilis IAM 1069 and Micrococcus luteus JCM 1464 at the concentration of 0.4 and 0.8 ${\mu}g$/mL, respectively. These results suggest that KH223 may have a great potential in the production of new antibiotics to combat multidrug-resistant pathogens and further studies may be warranted for the same.

Diversity and Antimicrobial Activity of Actinomycetes Isolated from Rhizosphere of Rice (Oryza sativa L.) (벼 근권에서 분리한 방선균의 다양성과 항균 활성)

  • Lee, Hye-Won;Ahn, Jae-Hyung;Weon, Hang-Yeon;Song, Jaekyeong;Kim, Byung-Yong
    • The Korean Journal of Pesticide Science
    • /
    • 제17권4호
    • /
    • pp.371-378
    • /
    • 2013
  • Various microorganisms live in soil, of which those colonizing rhizosphere interact with nearby plants and tend to develop unique microbial communities. In this study, we isolated diverse actinomycetes from rhizosphere of rice (Oryza sativa L.) cultivated in fertilized (APK) and non-fertilized (NF) paddy soils, and investigated the diversity and antimicrobial activity of them. Using four kinds of selective media, 152 isolates were obtained from the soil samples and identified by determining 16S rRNA gene sequence. All of the isolates showed 99.0%~100.0% similarities with type strains and were classified into six genera: Dactylosporangium, Micromonospora, Kitasatospora, Promicromonospora, Streptomyces and Streptosporangium. Most of the isolates, 143 isolates, were classified into the genus Streptomyces. Additionally, many isolates had antimicrobial activity against plant pathogens, especially Magnaporthe oryzae (rice blast pathogen) in fungi. These findings demonstrated that rice rhizosphere can be a rich source of antagonistic actinomycetes producing diverse bioactive compounds.

Plant Growth Promoting and Disease Controlling Activities of Pseudomonas geniculata ANG3, Exiguobacterium acetylicum ANG40 and Burkholderia stabilis ANG51 Isolated from Soil (토양에서 분리한 Pseudomonas geniculata ANG3, Exiguobacterium acetylicum ANG40 및 Burkholderia stabilis ANG51의 식물 생장촉진 활성 및 식물병 방제활성)

  • Kim, Ji-Youn;Kim, Hee Sook;Lee, Song Min;Park, Hye-Jung;Lee, Sang-Hyeon;Jang, Jeong Su;Lee, Mun Hyon
    • Microbiology and Biotechnology Letters
    • /
    • 제48권1호
    • /
    • pp.38-47
    • /
    • 2020
  • This study was conducted to investigate both plant growth-promoting and plant disease- controlling activities of bacterial strains isolated from soil. All the isolated strains were able to grow at various temperatures. All the strains, except ANG40, showed antagonistic effects against various phytopathogenic fungi. This antagonism can be ascribed to the production of siderophores and antibiotic substances. In addition, all the strains showed abilities such as nitrogen fixation, phosphate solubilization, and siderophore production. These results suggest that nitrogen, phosphorus, and iron can be converted into forms that can be easily absorbed by the plants for their growth. Analysis of the growth-promoting properties revealed that ANG51 produced 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and indole-3-acetic acid (IAA) both of which are related to ethylene production. In contrast, the other strains were found to have only IAA-producing ability. Therefore, this study suggests that Pseudomonas geniculata ANG3, Exiguobacterium acetylicum ANG40, and Burkholderia stabilis ANG51, which were selected through analysis of comparative advantages for both plant growth promotion and disease-controlling activity, may be used as biological agents.

Effects of Phytophthora Blight-antagonistic Microorganisms Bacillus subtilis AH18 and Bacillus licheniformis K11 on the Soil Microbial Community (고추역병 길항미생물 Bacillus subtilis AH18과 Bacillus licheniformis K11의 토양미생물 생태에 미치는 영향)

  • Park, Kee-Choon;Lim, Jong-Hui;Kim, Sang-Dal;Yi, Young-Keun
    • Journal of Applied Biological Chemistry
    • /
    • 제52권3호
    • /
    • pp.121-125
    • /
    • 2009
  • We measured the influence of antifungal antagonists Bacillus subtilis AH18 and Bacillus licheniformis K11 on soil microbial community in microcosms. Both antifungal antagonists were confirmed to suppress hot pepper phytophthora blight. Phospholipid fatty acids (PLFA) were analyzed to investigate the soil microbial community. B. subtilis AH18 changed the total PLFA composition and bio-indicators of PLFA, compared with other treatments. B. subtilis AH18 decreased the proportion of bacteria and gram negative/gram positive bacteria, and increased the fungi/bacteria and anaerobic/aerobic microorganisms. In addition cy19:0/18:$1{\omega}7c$, which means adaptation to unfavorable environmental conditions, was increased by the application of B. subtilis AH18. On the other hand the inoculation of B. licheniformis K11 or combined inoculation of both antifungal strains did not affect soil microbial community. The suppression of phytophthora blight and preservation of indigenous soil microbial community may be achieved by the combined application of B. subtilis AH18 and B. licheniformis K11.

Characteristics of Opioid k-Receptors in Rat and Guinea Pig Cortex (백서와 기니픽의 대뇌피질에서 Opioid Kappa 수용체의 특성에 관한 연구)

  • Kim, Kee-Won;Rho, Hye-Won;Kim, Hyoung-Il;Eun, Jae-Soon;Soh, Soo-Mi;Cho, Kyu-Park
    • The Korean Journal of Pharmacology
    • /
    • 제30권2호
    • /
    • pp.153-165
    • /
    • 1994
  • In this study, we tested the influences of several ${\kappa}$ opioid ligands on the $[^3H]diprenorphine$ binding in rat and guinea pig cortex membrane preparations. Using paradigm to block ${\mu}\;and\;{\delta}$ opioid receptors with $DAMGO(1{\mu}M)$ and $DPDPE(1{\mu}M)$, $[^3H]diprenorphine$ labeled ${\kappa}$ sites. Competition analysis in both rat and guinea pig cortex has shown a single population of $[^3H]diprenorphine$ binding site with different Kd values, respectively. There is a significant difference in Ki values of (-) WIN44441 and (+)WIN44441 in both rat and guinea pig cortex. Bremazocine, (-)ethylketocyclazocine, (-)cyclazocine, nor-binaltorphimine effectively inhibited the $[^3H]diprenorphine$ binding with different Ki values in rat and guinea pig cortex. U-69,593, U-50,488H and dynorphine-A (1-8) did not inhibit the $[^3H]diprenorphine$ binding in rat but in guinea pig cortex. Nor-binaltorphimine was a ligand discriminate the ${\kappa}_1$, and ${\kappa}_2$ receptor most effectively. We, also, examined the influence of Na ion and $GTP{\gamma}S$, a nonhydrolyzable guanine nucleotide analog, on the inhibition of $[^3H]diprenorphine$ binding by diprenorphine, (-)ethyl-ketocyclazocine, U-69,593 and bremazocine. By the replacement of NaCl with N-methy-D-glucamine or addition of $GTP{\gamma}S$, Ki values of diprenorpnine were not changed and that of ethylketocyclazocine were changed significantly in both rat and guinea pig cortex. The Ki value of bremazocine was decreased by removal of Na ion, and increased by $GTP{\gamma}S$, however, was not changed by any one of either. These results suggest that there are 2 kinds of subtypes of ${\kappa}$ opioid receptor, ${\kappa}_1$, and ${\kappa}_2$, showing different Ki values for various ${\kappa}$ opioid ligands, also, bremazocine possess the antagonistic property at ${\kappa}_2$ site which is dominant subtype of K receptor in rat cortex.

  • PDF