References
- Rodriguez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
- Mohamed I, Eid KE, Abbas MHH, Salem AA. 2019. Use of plant growth promoting rhizobacteria (PGPR) and mycorrhizae to improve the growth and nutrient utilization of common bean in a soil infected with white rot fungi. Ecotoxicol. Environ. Safety 171: 539-548. https://doi.org/10.1016/j.ecoenv.2018.12.100
- Lee SM, Chung JH, Ryu CM. 2015. Augmenting plant immune responses and biological control by microbial determinants. Res. Plant Dis. 21: 161-179. https://doi.org/10.5423/RPD.2015.21.3.161
- Mahajan S, Tuteja N. 2005. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 444: 139-158. https://doi.org/10.1016/j.abb.2005.10.018
- Rodrigues DF, Goris J, Vishnivetskaya T, Gilichinsky D, Thomashow MF, Tiedje JM. 2006. Characterization of Exiguobacterium isolates from the Siberian permafrost. Description of Exiguobacterium sibiricum sp. nov. Extremophilies 10: 285-294. https://doi.org/10.1007/s00792-005-0497-5
- Forni C, Duca D, Glick BR. 2017. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 410: 335-356. https://doi.org/10.1007/s11104-016-3007-x
- Jung BK, Lim JH, An CH, Kim YH, Kim SD. 2012. Selection and identification of phytohormones and antifungal substances simultaneously producing plant growth promotion rhizobacteria from microbial agent treated red-pepper field. Korean J. Microbiol. Biotechnol. 40: 190-196. https://doi.org/10.4014/kjmb.1207.07001
- Ali SS, Vidhale NN. 2013. Bacterial siderophore and their application : A review. Int. J. Curr. Microbiol. App. Sci. 2: 303-312.
- Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Shin PY, Cho SJ. 2011. Cellulase and xylanase activity of compost- promoting bacteria Bacillus sp. SJ21. Korean J. Soil Sci. Fert. 44: 836-840. https://doi.org/10.7745/KJSSF.2011.44.5.836
- Oh DG, Jang YK, Woo JE, Kim JS, Lee CH. 2016. Metabolomics reveals the effect of garlic on antioxidant- and protease-activities during Cheonggukjang (fermented soybean paste) fermentation. Food Res. Int. 82: 86-94. https://doi.org/10.1016/j.foodres.2016.01.019
- Um YR, Kim BR, Jeong JJ, Chung CM, Lee Y. 2014. Identification of endophytic bacteria in Panax ginseng seeds and their potential for plant growth promotion. Korean J. Med. Crop Sci. 22: 306-312. https://doi.org/10.7783/KJMCS.2014.22.4.306
- Pande A, Pandey P, Mehra S, Singh M, Kaushik S. 2017. Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize. J. Genet. Eng. Biotechnol. 15: 379-391. https://doi.org/10.1016/j.jgeb.2017.06.005
- Barnawal D, Bharti N, Maji D, Chanotiya C, Kalra A. 2014. ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J. Plant Physiol. 171: 884-894. https://doi.org/10.1016/j.jplph.2014.03.007
- Blaha D, Prigent-Combaret C, Mirza MS, Moenne-Loccoz Y. 2006. Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol. Ecol. 56: 455-470. https://doi.org/10.1111/j.1574-6941.2006.00082.x
- Leveau JHJ, Lindow SE. 2005. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl. Environ. Microbiol. 71: 2365-2371. https://doi.org/10.1128/AEM.71.5.2365-2371.2005
- Cao P, Shen SS, Wen CY, Song S, Park CS. 2009. The effect of the colonization of Serratia plymuthica A21-3 in rhizosphere soil and root of pepper in different soil environment. Res. Plant Dis. 15: 101-105. https://doi.org/10.5423/RPD.2009.15.2.101
- Quan CS, Zheng W, Liu Y, Fan SD. 2006. Isolation and characterization of a novel Burkholderia cepacia with strong antifungal activity against Rhizoctonia solani. Appl. Microbiol. Biotechnol. 72: 1276-1284. https://doi.org/10.1007/s00253-006-0425-3
- Yu S, Teng C, Bai X, Liang J, Song T, Dong L, et al. 2017. Optimization of siderophore production by Bacillus sp. PZ-1 and its potential enhancement of phytoextration of Pb from soil. J. Microbiol. Biotechnol. 27: 1500-1512. https://doi.org/10.4014/jmb.1705.05021
- Jung HK, Kim JR, Woo SM, Kim SD. 2006. An auxin producing plant growth promoting rhizobacterium Bacillus subtilis AH18 which has siderophore-producing biocontrol activity. Korean J. Microbiol. Biotechnol. 34: 94-100.
- Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18: 355-383. https://doi.org/10.1016/S0734-9750(00)00041-0
- Hong SW, Shin KC, Lee EY. 2010. Characterizaiton of nitrogen fixing bacteria Mycobacterium homini sp. AKC-10 isolated from the wetland. Korean J. Microbiol. Biotechnol. 38: 302-307.
- Biswas JC, Ladha JK, Dazzo FB. 2000. Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci. Soc. Am. J. 64: 1644-1650. https://doi.org/10.2136/sssaj2000.6451644x
- Latt ZK, Yu San S, Kyaw EP, Lynn TM, Nwe MT, Mon WW, et al. 2018. Using cellulolytic nitrogen fixing bacterium, Azomonas agilis for effective degradation of agricultural residues. Open Microbiol. J. 12: 154-162. https://doi.org/10.2174/1874285801812010154
- Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34: 33-41. https://doi.org/10.1016/j.apsoil.2005.12.002
- Park HS, Yeom YH, Yoon MH. 2018. Comparison on phosphate solubilization ability of Pantoea rodasil and Burkholderia stabilis isolated from button mushroom media. J. Mushrooms 16: 31-38.
- Ahemad M, Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 26: 1-20. https://doi.org/10.1016/j.jksus.2013.05.001
- Onofre-Lemus J, Hernandez-Lucas I, Girard L, Caballero-Mellado J. 2009. ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl. Environ. Microbiol. 75: 6581-6590. https://doi.org/10.1128/AEM.01240-09
- Glick BR, Penrose DM, Jiping L. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190: 63-68. https://doi.org/10.1006/jtbi.1997.0532
- Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Gupta HS. 2010. Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold tolerant bacterial strain from the Uttarakhand Himalayas. Indian J. Microbiol. 50: 50-56. https://doi.org/10.1007/s12088-009-0024-y
- Gopalakrishnan S, Srinivas V, Prakash B, Sathya A, Vijayabharathi R 2015. Plant growth-promoting traits of Pseudomonas geniculata isolated from chickpea nodules. 3 Biotech. 5: 653-661. https://doi.org/10.1007/s13205-014-0263-4
- Adelantado C, Shiva C, Arosemena L, Costa-Batllori L, Calvo MA. 2007. Enzymatic mechanisms related to antimicrobial activity of Rutaceae extracts. J. Biol. Sci. 7: 71-73. https://doi.org/10.3923/jbs.2007.71.73
- Ramos PL, Van Trappen S, Thompson F, Rocha RCS, Barbosa HR, De Vos P, et al. 2010. Screening for endophytic nitrogen-fixing bacteria in Brazilian sugarcane varieties used in organic farming and description of Stenotrophomonas pavanii sp. nov. Int. J. Syst. Evol. Microbiol. 61: 926-931. https://doi.org/10.1099/ijs.0.019372-0
- Ong KS, Aw YK, Lee LH, Yule CM, Cheow YL, Lee SM. 2016. Burkholderia paludis sp. nov., an antibiotic-siderophore producing novel Burkholderia cepacia complex species, isolated from Malaysian tropical peat swamp soil. Front. Microbiol. 7: 2046. https://doi.org/10.3389/fmicb.2016.02046