Isolation and In Vitro Antimicrobial Activity of Low Molecular Phenolic Compounds from Burkholderia sp. MP-1

Brukholderia sp. MP-1 에서의 페놀화합물의 분리와 항균활성의 측정

  • Mao, Sopheareth (Division of Applied BioScience and Biotechnology, and Environmental Friendly Agriculture Research Center, Chonnam National University) ;
  • Jin, Rong-De (Division of Applied BioScience and Biotechnology, and Environmental Friendly Agriculture Research Center, Chonnam National University) ;
  • Lee, Seung-Je (Department of Food Science and Technology, Division of Applied Bioscience & Biotechnology) ;
  • Kim, Yong-Woong (Division of Applied BioScience and Biotechnology, and Environmental Friendly Agriculture Research Center, Chonnam National University) ;
  • Kim, In-Seon (Division of Applied BioScience and Biotechnology, and Environmental Friendly Agriculture Research Center, Chonnam National University) ;
  • Shim, Jae-Han (Division of Applied BioScience and Biotechnology, and Environmental Friendly Agriculture Research Center, Chonnam National University) ;
  • Park, Ro-Dong (Division of Applied BioScience and Biotechnology, and Environmental Friendly Agriculture Research Center, Chonnam National University) ;
  • Kim, Kil-Yong (Division of Applied BioScience and Biotechnology, and Environmental Friendly Agriculture Research Center, Chonnam National University)
  • 마오 쏘피에 (전남대학교 응용생물공학부) ;
  • 김영덕 (전남대학교 응용생물공학부) ;
  • 이승제 (친환경농업연구사업단) ;
  • 김용웅 (전남대학교 응용생물공학부) ;
  • 김인선 (전남대학교 응용생물공학부) ;
  • 심재한 (전남대학교 응용생물공학부) ;
  • 박노동 (전남대학교 응용생물공학부) ;
  • 김길용 (전남대학교 응용생물공학부)
  • Received : 2006.05.01
  • Accepted : 2006.07.01
  • Published : 2006.08.28

Abstract

An antagonistic strain, Burkholderia MP-1, showed antimicrobial activity against various filamentous plant pathogenic fungi, yeasts and food borne bacteria (Gram-positive and Gram-negative). The nucleotide sequence of the 16S rRNA gene (1491 pb) of strain MP-1 exhibited close similarity (99-100%) with other Burkholderia 16S rRNA genes. Isolation of the antibiotic substances from culture broth was fractionated by ethyl acetate (EtOAc) solvent and EtOAc-soluble acidic fraction. The antibiotic substances were purified through a silica gel, Sephadex LH-20, ODS column chromatography, and high performance liquid chromatography, respectively. Four active substances were identified as phenylacetic acid, hydrocinnamic acid, 4-hydroxyphenylacetic acid and 4-hydroxyphenylacetate methyl ester by gas chromatographic-mass spectrum analysis. The minimum inhibition of concentration (MIC) of each active compound inhibited the growth of the microorganisms tested at 250 to $2500{\mu}g\;ml^{-1}$. The antimicrobial activity of crude acidic fraction at 1 mg of dry weight per 6 mm paper disc was more effective than authentic standard mixture (four active substances were mixed with the same ratio as acidic fraction) over a wide range of bacterial test.

길항미생물 MP-1은 여러 종의 곰팡이와 효모 및 음식물을 부패시키는 세균 (그람양성 및 음성) 에 대하여 항균활성을 보였다. MP-1의 16S rRNA gene 염기서열은 기존에 밝혀진 Brukholderia sp.의 염기서열과 99-100% 유사하였다. 배양액으로부터의 항균물질은 에틸아세테이트 (EtOAc)를 사용하여 분리하였으며 EtOAc에 용해된 산성 분획은 silica gel, Sephadex LH-20, ODS 컬럼크로마토 그래피 및 HPLC를 사용하여서 정제를 실시 하였다. 최종적으로 Gas chromatographic-mass 스펙트럼을 통한 분석을 통하여 4 종의 항균 활성을 나타내는 물질은 phenylacetic acid, hydrocinnamic acid, 4-hydroxyphenylacetic acid 및 4-hydroxyphenylacetate methyl ester로 확인 되었다. 각각의 항균 활성물질들의 미생물에 대한 최소저해농도(MIC)는 $250{\sim}2500ug\;ml^{-1}$ 인 것으로 나타났다. 또한 6 mm paper disc 에서의 1mg (건물중) 산성 분획의 항균활성은 같은 비율로 혼합한 표준혼합용액 보다 더 효과적인 것으로 나타났다.

Keywords

References

  1. Burhead, K, Slininger, P. A., and Schisler, D. A. 1998. Biological control bacterium Enterobacter cloacae SI 1:T:07 (NRRL B-21050) produces the antifungal compound phenylacetic acid in sabouraur maltose broth culture. Soil BioI. Biochem. 30:665-667 https://doi.org/10.1016/S0038-0717(97)00170-3
  2. Burkholder, W.H. 1950. Sour skin, a bacterial rot of onion bulbs. Phytopathology. 40: 115-117
  3. Byung, K.H., Song, W.L., Beom, S.K, Jung, Y.L., and Surk, S.M. 2001. Isolation and in vitro and in vivo antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Appl. Environ. Microbiol. 67:3739-3745 https://doi.org/10.1128/AEM.67.8.3739-3745.2001
  4. Camirand, A., Phipps, J., and Wightman, F. 1983. Comparative metabolism of Ltyrosine and L-phenylalanine in tobacco plants in relation to the biosynthesis of phenylacetic acids. Can. J. Bot. 61 :2302-2308 https://doi.org/10.1139/b83-252
  5. Cartwright, D.K., Chilton, W.S., and Benson, D.M. 1995. Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5B, a biocontrol agent of Rhiroctonia solani. Appl. Microbiol. Biotechnol. 43:211-216 https://doi.org/10.1007/BF00172814
  6. Cartwright D.K, and Benson D.M. 1995. Optimization of biological control of Rhizoctonia stem rot of poinsettia by Paecilomyces lilacinus and Pseudomonas cepacia, Plant Dis. 79:301-308 https://doi.org/10.1094/PD-79-0301
  7. Dagley S., Chapman P.J., and Gibson D.T. 1965. The metabolism of b phenylpropionic acid by an Achromohacter. Biochem. J. 97: 643 -650 https://doi.org/10.1042/bj0970643
  8. Di Cello F., Bevivino A., Chiarini L., Fani R., Paffetti D., Tabacchioni S., and Dalmastri C. 1997. Biodiversity of a Burkholderia cepacia population isolated from the maize rhizoshere at different plant growth stages. Appl. Environ. Microbiol. 63: 4485-4493
  9. Folsom B.R., Chapman P.J., and Pritchard P.H. 1990. Phenol and tricholoethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates, Appl. Environ. Microbiol. 65: 1279-1285
  10. Fravel, D. R. 1988. Role of antibiosis in the biocontrol of plant desease. Ann. Rev. Phytopathol. 26: 75-91 https://doi.org/10.1146/annurev.py.26.090188.000451
  11. Haugland R.A., Schlemm D.J., Lyons R.P., Sferra P.R., and Chakrabarty A.M. 1990. Degradation of chlorinated phenoxyacetate herbicide 2,4-dichlorophenoxyacetic acid and 2, 4, 5-trichlorophenoxyacetic acid by pure and mixed bacterial cultures, Appl. Environ. Microbiol. 56: 1357-1362
  12. Hirota, A., Horikawa, T. and Fujiwara, A. 1992. Isolation of phenylacetic acid from a phytopathogenic fungus, Glomerella cingulata. Biosci. Biotech. Biochem. 57: 492 https://doi.org/10.1271/bbb.57.492
  13. Jae, G.K., Sun, T.K., and Kyu, Y.K. 1999. Production of the antifungal compound phenylacetic acid by antagonistic bacterium Pseudomonas sp. Agric. Chem. Biotechnol. 42: 197-201
  14. Kawazu K, Zhang H, and Kanzaki. 1996. Accumulation of benzoic acid in suspension of cultured cells of Pinus thungergii Oarl. in response to phenylacetic acid administration. Biosci Biotechnol Biochem 60: 1410-1412 https://doi.org/10.1271/bbb.60.1410
  15. Kim K.D, Nemec S, and Musson G. 1997. Control of Phytophthora root and crown rot of bell pepper with composts and soil amendments in the greenhouse. Applied Soil Ecology. 5: 169-179 https://doi.org/10.1016/S0929-1393(96)00138-2
  16. Lam, Y. W., Wang, H.X, and Ng, T.B. 2000. A robust cysteinedeficient chitinase like antifungal protein from inner shoots of the edible chive Allium tuberosum. Biochem. Biophys. Res. Commun. 279: 74-80 https://doi.org/10.1006/bbrc.2000.3821
  17. Lee S. J., J. Y. Cho., J. I. Cho., J. H. Moon., K. D. Park., Y. J. Lee, and K. H. Park. 2004. Isolation and characterization of antimicrobial substance macrolactin A produced from bacillus amyloliquefaciens CHO 104 isolated from soil. J. Microbiol. Biotechnol. 14: 525-531
  18. Meyer, J.M., Hohnadel, D., and Halle, F. 1989. Cepabactin from Pseudomonas cepacia, a new type of siderophore. J .Gen. Microbiol. 135: 1479-1487
  19. Murray, P. R., Baron, E. J., Pfaller, M. A., Tenover, F. C. and Yolke, R. H. 1995. Manual of Clinical Microbiology, Vol. 6th ed. ASM, Washington, DC
  20. O'Sullivan, D.J. and O'Gara, F. 1992. Traits of fluorescent Pseudomonas ssp. Involved in suppression of plant root pathogens. Microbiol. Rev. 56: 662-676
  21. Rasmay B.A, Ramsay J.A., and Cooper D.G. 1989. Production of poly-$\beta$-hydroxyalkanoic acid by Pseudomonas cepacia. Appl. Environ. Microbiol. 55: 584-589
  22. Roitman, J.N., Mahoney, N.E., and Janisiewicz, W.J. 1990. Production and composition of phenylpyrrole metabolites produced by Pseudomonas cepacia. Appl. Microbiol. Biotechnol. 34: 381-386
  23. Saddler G.S. 1994. Burkholderia cepacia, Mycopathologia.128: 53-54
  24. Smirnov V.V., Garagulya A.D., and Kiprianova E.A. 1982. Antibiotic properties of Pseudomonas cepacia. Antibiotiki (Moscow). 27: 577-580
  25. Stanier, R.Y., Palleroni, N.J., and Doudorotf, M. 1966. The aerobic pseudomonas: a taxonomic study. J. Gen. Microbiol. 43: 159-271 https://doi.org/10.1099/00221287-43-2-159
  26. Thomashow, L.S., and Weller, D.M. 1996. Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Plant Microbe Interactions (Stacey, G., and Keen, N.T., Eds.) Vol. 1, pp. 187- 236. Chapman and Hall, Ltd., London
  27. Wang, H,X. Lui, F., and Ng,T.B. 2001. Examination of pineal indoles and 6-methoxy-2-benzoxaolinone for antioxidant and antimicrobial effects. Comp. Biochem. Physiol. C130: 379-388
  28. Weller D. M. 1988. Biological control of soilborne plant pathogens in the rhizoshere with bacteria. Annual Review of Phytopathology. 26: 379-407 https://doi.org/10.1146/annurev.py.26.090188.002115
  29. Wightman, F. and Lighty, D. L. 1982. Identification of phenylacetic acid as a natural auxin in the shoots of higher plants. Physiol. Plant. 55: 17-24 https://doi.org/10.1111/j.1399-3054.1982.tb00278.x
  30. Yabuuchi, E., Kosako, Y., and Oyaizu, H. 1992. Proposal of Burkholderia gen. Nov. and transfer of seven species of the genus Pseudomonas homology group II to a new genus, with the type species Burkholderia cepacia (Palleroni and Homes 1981) comb. Nov. Microbiology and Immunology. 36: 1251-1275 https://doi.org/10.1111/j.1348-0421.1992.tb02129.x
  31. Yoon K, Cho JY, Kuk JH, Moon JH, Cho JI, Kim YC, and Park KH. 2004. Identification and antimicrobial activity of phenylacetic acid produced by Bacillus licheniformis isolated from fermented soybean, Chungkook-Jang. Curr. Microbiol. 48:312-317 https://doi.org/10.1007/s00284-003-4193-3