Browse > Article

Isolation and In Vitro Antimicrobial Activity of Low Molecular Phenolic Compounds from Burkholderia sp. MP-1  

Mao, Sopheareth (Division of Applied BioScience and Biotechnology, and Environmental Friendly Agriculture Research Center, Chonnam National University)
Jin, Rong-De (Division of Applied BioScience and Biotechnology, and Environmental Friendly Agriculture Research Center, Chonnam National University)
Lee, Seung-Je (Department of Food Science and Technology, Division of Applied Bioscience & Biotechnology)
Kim, Yong-Woong (Division of Applied BioScience and Biotechnology, and Environmental Friendly Agriculture Research Center, Chonnam National University)
Kim, In-Seon (Division of Applied BioScience and Biotechnology, and Environmental Friendly Agriculture Research Center, Chonnam National University)
Shim, Jae-Han (Division of Applied BioScience and Biotechnology, and Environmental Friendly Agriculture Research Center, Chonnam National University)
Park, Ro-Dong (Division of Applied BioScience and Biotechnology, and Environmental Friendly Agriculture Research Center, Chonnam National University)
Kim, Kil-Yong (Division of Applied BioScience and Biotechnology, and Environmental Friendly Agriculture Research Center, Chonnam National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.39, no.4, 2006 , pp. 195-203 More about this Journal
Abstract
An antagonistic strain, Burkholderia MP-1, showed antimicrobial activity against various filamentous plant pathogenic fungi, yeasts and food borne bacteria (Gram-positive and Gram-negative). The nucleotide sequence of the 16S rRNA gene (1491 pb) of strain MP-1 exhibited close similarity (99-100%) with other Burkholderia 16S rRNA genes. Isolation of the antibiotic substances from culture broth was fractionated by ethyl acetate (EtOAc) solvent and EtOAc-soluble acidic fraction. The antibiotic substances were purified through a silica gel, Sephadex LH-20, ODS column chromatography, and high performance liquid chromatography, respectively. Four active substances were identified as phenylacetic acid, hydrocinnamic acid, 4-hydroxyphenylacetic acid and 4-hydroxyphenylacetate methyl ester by gas chromatographic-mass spectrum analysis. The minimum inhibition of concentration (MIC) of each active compound inhibited the growth of the microorganisms tested at 250 to $2500{\mu}g\;ml^{-1}$. The antimicrobial activity of crude acidic fraction at 1 mg of dry weight per 6 mm paper disc was more effective than authentic standard mixture (four active substances were mixed with the same ratio as acidic fraction) over a wide range of bacterial test.
Keywords
Burkholderia sp. MP-1; Phenylacetic acid; Hydrocinnamic acid; 4-hydroxyphenylacetic acid; 4-hydroxyphenylacetate methyl ester; Acidic fraction; Authentic standard mixture;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Burkholder, W.H. 1950. Sour skin, a bacterial rot of onion bulbs. Phytopathology. 40: 115-117
2 Folsom B.R., Chapman P.J., and Pritchard P.H. 1990. Phenol and tricholoethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates, Appl. Environ. Microbiol. 65: 1279-1285
3 Kawazu K, Zhang H, and Kanzaki. 1996. Accumulation of benzoic acid in suspension of cultured cells of Pinus thungergii Oarl. in response to phenylacetic acid administration. Biosci Biotechnol Biochem 60: 1410-1412   DOI   ScienceOn
4 Murray, P. R., Baron, E. J., Pfaller, M. A., Tenover, F. C. and Yolke, R. H. 1995. Manual of Clinical Microbiology, Vol. 6th ed. ASM, Washington, DC
5 Rasmay B.A, Ramsay J.A., and Cooper D.G. 1989. Production of poly-$\beta$-hydroxyalkanoic acid by Pseudomonas cepacia. Appl. Environ. Microbiol. 55: 584-589
6 Dagley S., Chapman P.J., and Gibson D.T. 1965. The metabolism of b phenylpropionic acid by an Achromohacter. Biochem. J. 97: 643 -650   DOI
7 Camirand, A., Phipps, J., and Wightman, F. 1983. Comparative metabolism of Ltyrosine and L-phenylalanine in tobacco plants in relation to the biosynthesis of phenylacetic acids. Can. J. Bot. 61 :2302-2308   DOI
8 Meyer, J.M., Hohnadel, D., and Halle, F. 1989. Cepabactin from Pseudomonas cepacia, a new type of siderophore. J .Gen. Microbiol. 135: 1479-1487
9 Stanier, R.Y., Palleroni, N.J., and Doudorotf, M. 1966. The aerobic pseudomonas: a taxonomic study. J. Gen. Microbiol. 43: 159-271   DOI   ScienceOn
10 Yabuuchi, E., Kosako, Y., and Oyaizu, H. 1992. Proposal of Burkholderia gen. Nov. and transfer of seven species of the genus Pseudomonas homology group II to a new genus, with the type species Burkholderia cepacia (Palleroni and Homes 1981) comb. Nov. Microbiology and Immunology. 36: 1251-1275   DOI
11 Haugland R.A., Schlemm D.J., Lyons R.P., Sferra P.R., and Chakrabarty A.M. 1990. Degradation of chlorinated phenoxyacetate herbicide 2,4-dichlorophenoxyacetic acid and 2, 4, 5-trichlorophenoxyacetic acid by pure and mixed bacterial cultures, Appl. Environ. Microbiol. 56: 1357-1362
12 Lam, Y. W., Wang, H.X, and Ng, T.B. 2000. A robust cysteinedeficient chitinase like antifungal protein from inner shoots of the edible chive Allium tuberosum. Biochem. Biophys. Res. Commun. 279: 74-80   DOI   ScienceOn
13 Jae, G.K., Sun, T.K., and Kyu, Y.K. 1999. Production of the antifungal compound phenylacetic acid by antagonistic bacterium Pseudomonas sp. Agric. Chem. Biotechnol. 42: 197-201
14 Di Cello F., Bevivino A., Chiarini L., Fani R., Paffetti D., Tabacchioni S., and Dalmastri C. 1997. Biodiversity of a Burkholderia cepacia population isolated from the maize rhizoshere at different plant growth stages. Appl. Environ. Microbiol. 63: 4485-4493
15 Wang, H,X. Lui, F., and Ng,T.B. 2001. Examination of pineal indoles and 6-methoxy-2-benzoxaolinone for antioxidant and antimicrobial effects. Comp. Biochem. Physiol. C130: 379-388
16 Weller D. M. 1988. Biological control of soilborne plant pathogens in the rhizoshere with bacteria. Annual Review of Phytopathology. 26: 379-407   DOI   ScienceOn
17 Hirota, A., Horikawa, T. and Fujiwara, A. 1992. Isolation of phenylacetic acid from a phytopathogenic fungus, Glomerella cingulata. Biosci. Biotech. Biochem. 57: 492   DOI
18 O'Sullivan, D.J. and O'Gara, F. 1992. Traits of fluorescent Pseudomonas ssp. Involved in suppression of plant root pathogens. Microbiol. Rev. 56: 662-676
19 Yoon K, Cho JY, Kuk JH, Moon JH, Cho JI, Kim YC, and Park KH. 2004. Identification and antimicrobial activity of phenylacetic acid produced by Bacillus licheniformis isolated from fermented soybean, Chungkook-Jang. Curr. Microbiol. 48:312-317   DOI
20 Byung, K.H., Song, W.L., Beom, S.K, Jung, Y.L., and Surk, S.M. 2001. Isolation and in vitro and in vivo antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Appl. Environ. Microbiol. 67:3739-3745   DOI   ScienceOn
21 Saddler G.S. 1994. Burkholderia cepacia, Mycopathologia.128: 53-54
22 Cartwright D.K, and Benson D.M. 1995. Optimization of biological control of Rhizoctonia stem rot of poinsettia by Paecilomyces lilacinus and Pseudomonas cepacia, Plant Dis. 79:301-308   DOI   ScienceOn
23 Kim K.D, Nemec S, and Musson G. 1997. Control of Phytophthora root and crown rot of bell pepper with composts and soil amendments in the greenhouse. Applied Soil Ecology. 5: 169-179   DOI   ScienceOn
24 Cartwright, D.K., Chilton, W.S., and Benson, D.M. 1995. Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5B, a biocontrol agent of Rhiroctonia solani. Appl. Microbiol. Biotechnol. 43:211-216   DOI
25 Lee S. J., J. Y. Cho., J. I. Cho., J. H. Moon., K. D. Park., Y. J. Lee, and K. H. Park. 2004. Isolation and characterization of antimicrobial substance macrolactin A produced from bacillus amyloliquefaciens CHO 104 isolated from soil. J. Microbiol. Biotechnol. 14: 525-531
26 Fravel, D. R. 1988. Role of antibiosis in the biocontrol of plant desease. Ann. Rev. Phytopathol. 26: 75-91   DOI   ScienceOn
27 Burhead, K, Slininger, P. A., and Schisler, D. A. 1998. Biological control bacterium Enterobacter cloacae SI 1:T:07 (NRRL B-21050) produces the antifungal compound phenylacetic acid in sabouraur maltose broth culture. Soil BioI. Biochem. 30:665-667   DOI   ScienceOn
28 Smirnov V.V., Garagulya A.D., and Kiprianova E.A. 1982. Antibiotic properties of Pseudomonas cepacia. Antibiotiki (Moscow). 27: 577-580
29 Roitman, J.N., Mahoney, N.E., and Janisiewicz, W.J. 1990. Production and composition of phenylpyrrole metabolites produced by Pseudomonas cepacia. Appl. Microbiol. Biotechnol. 34: 381-386
30 Thomashow, L.S., and Weller, D.M. 1996. Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Plant Microbe Interactions (Stacey, G., and Keen, N.T., Eds.) Vol. 1, pp. 187- 236. Chapman and Hall, Ltd., London
31 Wightman, F. and Lighty, D. L. 1982. Identification of phenylacetic acid as a natural auxin in the shoots of higher plants. Physiol. Plant. 55: 17-24   DOI