• Title/Summary/Keyword: anode water

Search Result 289, Processing Time 0.034 seconds

Application of Hierarchically Porous Fe2O3 Nanofibers for Anode Materials of Lithium-ion Batteries (계층적 다공구조를 갖는 Fe2O3 나노섬유의 리튬 이차전지 음극소재 적용)

  • Jo, Min Su;Cho, Jung Sang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.267-273
    • /
    • 2019
  • Hierarchically porous $Fe_2O_3$ nanofibers with meso- and macro- pores are designed and synthesized by electrospinning and subsequent heat-treatment. The macro pores are generated by selectively decomposition of polystyrene as a dispersed phase in the as-spun fibers containing $Fe(acac)_3$/polyacrylonitrile continuous phases during heat-treatment. Additionally, meso-pores formed by evaporation of infiltrated water vapor during electrospinning process interconnected the macro-pores and results in the formation of hierarchically porous $Fe_2O_3$ nanofibers. The initial discharge capacity and Coulombic efficiency of the hierarchically porous $Fe_2O_3$ nanofibers at a current density of $1.0A\;g^{-1}$ are $1190mA\;h\;g^{-1}$ and 79.2%. Additionally, the discharge capacity of the nanofibers is $792mA\;h\;g^{-1}$ after 1,000 cycles. The high structural stability and morphological benefits of the hierarchically porous $Fe_2O_3$ nanofibers resulted in superior lithium ion storage performance.

Electrochemical treatment of wastewater using boron doped diamond electrode by metal inter layer

  • KIM, Seohan;YOU, Miyoung;SONG, Pungkeun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.251-251
    • /
    • 2016
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. Wastewaters are consisting of complex mixture of different inorganic and organic compounds and some of them can be toxic, hazardous and hard to degrade. These effluents are mainly treated by conventional technologies such are aerobic and anaerobic treatment and chemical coagulation. But, these processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that could be show higher purification results. Among them, boron doped diamond (BDD) attract attention as electrochemical electrode due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD on Nb, Ta, W and Si substrates, but, their application in effluents treatment is not suitable due to high cost of metal and low conductivity of Si. To solve these problems, Ti has been candidate as substrate in consideration of cost and property. But there are adhesion issues that must be overcome to apply Ti as BDD substrate. Al, Cu, Ti and Nb thin films were deposited on Ti substrate to improve adhesion between substrate and BDD thin film. In this paper, BDD films were deposited by hot filament chemical vapor deposition (HF-CVD) method. Prior to deposition, cleaning processes were conducted in acetone, ethanol, and isopropyl alcohol (IPA) using sonification machine for 7 min, respectively. And metal layer with the thickness of 200 nm were deposited by DC magnetron sputtering (DCMS). To analyze microstructure X-ray diffraction (XRD, Bruker gads) and field emission scanning electron microscopy (FE-SEM, Hitachi) were used. It is confirmed that metal layer was effective to adhesion property and improved electrode property. Electrochemical measurements were carried out in a three electrode electrochemical cell containing a 0.5 % H2SO4 in deionized water. As a result, it is confirmed that metal inter layer heavily effect on BDD property by improving adhesion property due to suppressing formation of titanium carbide.

  • PDF

Electrochemical Characteristic Change of Cr-doped Li4Ti5O12 due to Different Water Solubility of Dopant Precursors (도판트 프리커서의 용해도 차이에 의한 Cr-doped Li4Ti5O12의 전기화학적 특성 변화)

  • Yun, Su-Won;Song, Hannah;Kim, Yong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • $Li_4Ti_5O_{12}$ (LTO) have attracted much attention of researchers in the field of energy storage, because of their excellent stability for electric vehicle application. A main drawback of LTO is however their insulating nature due to the wide bandgap, which should be addressed to enhance the battery performance. In this study, we investigated the effect of water solubility of dopant precursor on the electrochemical characteristics of conducting LTO prepared by doping with $Cr^{3+}$ ions with the well-known wet-mixing method. The solubility of dopant precursor directly affected the morphology and the phase of doped LTO, and therefore their battery performance. In the case of employing the most soluble dopant precursor, $Cr(NO_3)_2$, the doped LTO demonstrated a markedly enhanced discharge capacity at high C-rate (130mAh/g @ 10C), which is about 2 times higher value than that of bare LTO.

Development of a continuous electrolytic system with an ion exchange membrane for pH-control with only one discharge of electrolytic solution and its characteristics (단일 전해액 배출만을 가지는 pH조절용 연속식 이온 교환막 전해 시스템의 개발과 그 특성)

  • Kim Kwang-Wook;Kim In-Tae;Park Geun-Il;Lee Eil-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.269-278
    • /
    • 2005
  • In order to produce only a pH-controlled solution without discharging any unwanted solution, this work has developed a continuous electrolytic system with a pH-adjustment reservoir being placed before an ion exchange membrane-equipped electrolyzer, where as a target solution was fed into the pH-adjustment reservoir, some portion of the solution in the pH-adjustment reservoir was circulated through the cathodic or anodic chamber of the electrolyzer depending on the type of the ion exchange membrane used, and some other portion of the solution in the pH-adjustment reservoir was discharged from the electrolytic system through the other counter chamber with its pH being controlled. The internal circulation of the pH-adjustment reservoir solution through the anodic chamber in the case of using a cation exchange membrane and that through the cathodic chamber in the case of using an anion exchange membrane could make the solution discharged from the other counter chamber effectively acidic and basic, respectively. The phenomena of the pH being controlled in the system could be explained by the electro-migration of the ion species in the solution through the ion exchange membrane under a cell potential difference between anode and cathode and its consequently-occurring non-charge equilibriums and electrolytic water- split reactions in the anodic and cathodic chambers.

  • PDF

Effect of Thermally Grown TiO2 Interlayer on Chlorine Evolution Efficiency and Durability of Ti/RuO2-PdO-TiO2 Electrodes (열산화법으로 생성된 TiO2 중간보호층이 Ti/RuO2-PdO-TiO2전극의 염소발생 효율 및 내구성에 미치는 영향)

  • Park, Da Jung;Choi, Sung Mook;Lee, Kyu Hwan
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.4
    • /
    • pp.207-213
    • /
    • 2018
  • Not only efficiency of chlorine evolution reaction (CER) but also durability namely service life is very important property in dimensional stable anode for Ballast Water Management System (BWMS) for marine ships. Many researchers have been focused on improving efficiency of CER by controlling composition, phase and surface area for a long time, but the efforts to increase durability was relatively small. In this study, we have investigated the effect of $TiO_2$ protective interlayers on efficiency and durability of DSA electrodes. $TiO_2$ protective interlayers were prepared by thermal oxidation at 500, 600 and $700^{\circ}C$ on Ti substrate. And then the DSA electrodes consisting of $Ti/RuO_2-PdO-TiO_2$ were prepared by thermal decomposition method on $TiO_2$ interlayers. The efficiencies of CER of DSA electrodes without $TiO_2$ interlayer and with $TiO_2$ interlayer grown at 500, 600 and $700^{\circ}C$ were 94.19, 94.45, 84.60 and 76.75% respectively. On the otherhand, durabilities were 30, 55, 90 and 65 hours respectively. In terms of industrial aspect, the performance of DSA is considered high efficiency and durability which can correspond to total production of chlorine. If we considered the performance index of DSA as the product of efficiency and durability, performance indices could be recalculated as 28.26, 50.85, 76.14 and 49.89 respectively. As the thermal oxidation temperature increasing, life time were increased remarkerbly, while efficiency of CER was decreased slightly. As a result, DSA electrode with $TiO_2$ interlayer grown at $600^{\circ}C$ has shown about 2.7 times performace of original DSA electrode without $TiO_2$ interlayer.

Research Trend on Precious Metal-Based Catalysts for the Anode in Polymer Electrolyte Membrane Water Splitting (고분자 전해질막 수전해의 산화 전극용 귀금속 촉매의 연구 동향)

  • Bu, Jong Chan;Jung, Won Suk;Lim, Da Bin;Shim, Yu-Jin;Cho, Hyun-Seok
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.154-161
    • /
    • 2022
  • The carbon-neutrality induced by the global warming is important for the modern society. Hydrogen has been received the attention as a new energy source to replace the fossil fuels. Polymer electrolyte membrane fuel cells, which convert the chemical reaction energy of hydrogen into electric power directly, are a type of eco-friendly power for future vehicles. Due to the sluggish oxygen reduction reaction and costly Pt catalyst in the cathode, the research related to the replacement of Pt-based catalysts has been vitally carried out. In this case, however, the performance is significantly different from each other and a variety of factors have existed. In this review paper, we rearrange and summarize relevant papers published within 5 years approximately. The selection of precursors, synthesis method, and co-catalyst are represented as a core factor, while the necessity of research for the further enhancement of activity may be raised. It can be anticipated to contribute to the replacement of precious metal catalysts in the various fields of study. The final objective of the future research is depicted in detail.

Optimization of fabrication and process conditions for highly uniform and durable cobalt oxide electrodes for anion exchange membrane water electrolysis (음이온 교환막 수전해 적용을 위한 고균일 고내구 코발트 산화물 전극의 제조 및 공정 조건 최적화)

  • Hoseok Lee;Shin-Woo Myeong;Jun-young Park;Eon-ju Park;Sungjun Heo;Nam-In Kim;Jae-hun Lee;Jae-hun Lee;Jae-Yeop Jeong;Song Jin;Jooyoung Lee;Sang Ho Lee;Chiho Kim;Sung Mook Choi
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.6
    • /
    • pp.412-419
    • /
    • 2023
  • Anion exchange membrane electrolysis is considered a promising next-generation hydrogen production technology that can produce low-cost, clean hydrogen. However, anion exchange membrane electrolysis technology is in its early stages of development and requires intensive research on electrodes, which are a key component of the catalyst-system interface. In this study, we optimized the pressure conditions of the hot-pressing process to manufacture cobalt oxide electrodes for the development of a high uniformity and high adhesion electrode production process for the oxygen evolution reaction. As the pressure increased, the reduction of pores within the electrode and increased densification of catalytic particles led to the formation of a uniform electrode surface. The cobalt oxide electrode optimized for pressure conditions exhibited improved catalytic activity and durability. The optimized electrode was used as the anode in an AEMWE single cell, exhibiting a current density of 1.53 A cm-2 at a cell voltage of 1.85 V. In a durability test conducted for 100 h at a constant current density of 500 mA cm-2, it demonstrated excellent durability with a low degradation rate of 15.9 mV kh-1, maintaining 99% of its initial performance.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

A Study on Process Performances of Continuous Electrodeionization with a Bipolar Membrane for Water Softening and Electric Regeneration (바이폴라막을 이용한 연수용 전기탈이온의 공정 효율 및 전기적 재생에 관한 연구)

  • Moon, Seung-Hyeon;Hong, Min-Kyoung;Han, Sang-Don;Lee, Hong-Joo
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.210-218
    • /
    • 2007
  • CEDI-BPM(Continuous Electrodeionization-Bipolar Membrane) has advantages due to high ion permselectivity through ion exchange membranes and the production of $H^+$ and $OH^-$ ions on the bipolar membrane surfaces for regeneration of ion exchange resin during electrodeionization operation. In this study, hardness materials were removed by the CEDI-BPM without scale formation and the ion exchange resins were electrically regenerated during the operation. The adsorption characteristic of ion exchange resin surface, the influence of flow rate on the hardness removal and electric regeneration were investigated in the study. The removal efficiency of Ca was higher than that of Mg in the CEDI-BPM, which was related to the high adsorption capacity of Ca on the cation exchange resin. With increasing flow rate, the flux of Ca and Mg was enhanced by the permselectivity of a cation exchange membrane. In the electric regeneration of CEDI-BPM, it was shown that the regeneration efficiency was higher with a lower regeneration potential applied between cathode and anode.

Electrochemical Reduction Process for Pyroprocessing (파이로프로세싱을 위한 전해환원 공정기술 개발)

  • Choi, Eun-Young;Hong, Sun-Seok;Park, Wooshin;Im, Hun Suk;Oh, Seung-Chul;Won, Chan Yeon;Cha, Ju-Sun;Hur, Jin-Mok
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.279-288
    • /
    • 2014
  • Nuclear energy is expected to meet the growing energy demand while avoiding CO2 emission. However, the problem of accumulating spent fuel from current nuclear power plants which is mainly composed of uranium oxides should be addressed. One of the most practical solutions is to reduce the spent oxide fuel and recycle it. Next-generation fuel cycles demand innovative features such as a reduction of the environmental load, improved safety, efficient recycling of resources, and feasible economics. Pyroprocessing based on molten salt electrolysis is one of the key technologies for reducing the amount of spent nuclear fuel and destroying toxic waste products, such as the long-life fission products. The oxide reduction process based on the electrochemical reduction in a LiCl-$Li_2O$ electrolyte has been developed for the volume reduction of PWR (Pressurized Water Reactor) spent fuels and for providing metal feeds for the electrorefining process. To speed up the electrochemical reduction process, the influences of the feed form for the cathode and the type of anode shroud on the reduction rate were investigated.