Browse > Article
http://dx.doi.org/10.5229/JKES.2022.25.4.154

Research Trend on Precious Metal-Based Catalysts for the Anode in Polymer Electrolyte Membrane Water Splitting  

Bu, Jong Chan (School of Food Biotechnology and Chemical Engineering, Hankyong National University)
Jung, Won Suk (School of Food Biotechnology and Chemical Engineering, Hankyong National University)
Lim, Da Bin (School of Food Biotechnology and Chemical Engineering, Hankyong National University)
Shim, Yu-Jin (School of Food Biotechnology and Chemical Engineering, Hankyong National University)
Cho, Hyun-Seok (Hydrogen Research Department, Korea Institute of Energy Research)
Publication Information
Journal of the Korean Electrochemical Society / v.25, no.4, 2022 , pp. 154-161 More about this Journal
Abstract
The carbon-neutrality induced by the global warming is important for the modern society. Hydrogen has been received the attention as a new energy source to replace the fossil fuels. Polymer electrolyte membrane fuel cells, which convert the chemical reaction energy of hydrogen into electric power directly, are a type of eco-friendly power for future vehicles. Due to the sluggish oxygen reduction reaction and costly Pt catalyst in the cathode, the research related to the replacement of Pt-based catalysts has been vitally carried out. In this case, however, the performance is significantly different from each other and a variety of factors have existed. In this review paper, we rearrange and summarize relevant papers published within 5 years approximately. The selection of precursors, synthesis method, and co-catalyst are represented as a core factor, while the necessity of research for the further enhancement of activity may be raised. It can be anticipated to contribute to the replacement of precious metal catalysts in the various fields of study. The final objective of the future research is depicted in detail.
Keywords
Polymer electrolyte membrane water splitting; Oxygen evolution reaction; Precious metal catalysts; Activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Q. Yao, B. Huang, Y. Xu, L. Li, Q. Shao, and X. Huang, A chemical etching strategy to improve and stabilize RuO2-based nanoassemblies for acidic oxygen evolution, Nano Energy, 84, 105909 (2021).   DOI
2 S. Laha, Y. Lee, F. Podjaski, D. Weber, V. Duppel, L. M. Schoop, F. Pielnhofer, C. Scheurer, K. Muller, U. Starke, K. Reuter, and B. V. Lotsch, Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium, Adv. Energy Mater., 9(15), 1803795 (2019).   DOI
3 Y. Xue, J. Fang, X. Wang, Z. Xu, Yu. Zhang, Q. Lv, M. Liu, W. Zhu, and Z. Zhuang, Sulfate-functionalized RuFeOx as highly efficient oxygen evolution reaction electrocatalyst in acid, Adv. Funct. Mater., 31(32), 2101405 (2021).   DOI
4 M. Yu, E. Budiyanto, and H. Tuysuz, Principles of water electrolysis, and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction, Angew. Chem., Int. Ed., 61(1), e202103824 (2022).   DOI
5 J. Y. Seo and J. H. Kim, 수소에너지 정부 정책 동향 및 R&D 역할, Bulletin of the Korea Photovoltaic Society, 3(2), 7 (2017).
6 S. S. Kumar and V. Himabindu, Hydrogen production by PEM water electrolysis - A review, Mater. Sci. Energy Technol., 2(3), 442 (2019).
7 J. Chi and H. Yu, Water electrolysis based on renewable energy for hydrogen production, Chinese Journal of Catalysis, 39(3), 390 (2018).   DOI
8 D. A. J. Rand, A journey on the electrochemical road to sustainability, J. Solid State Electrochem., 15, 1579 (2011).   DOI
9 A. Zuttel, Hydrogen storage methods, Naturwissenschaften, 91(4), 157 (2004).   DOI
10 S. Wang, A. Lu, and C.-J. Zhong, Hydrogen production from water electrolysis: role of catalysts, Nano Converg., 8, 4 (2021)   DOI
11 Z. Kou, X. Li, L. Zhang, W. Zang, X. Gao, and J. Wang, Dynamic surface chemistry of catalysts in oxygen evolution reaction, Small Science, 1(7), 2100011, (2021).   DOI
12 A. Brisse, J. Schefold, and M. Zahid, High temperature water electrolysis in solid oxide cells, Int. J. Hydrog. Energy, 33(20), 5375 (2008).   DOI
13 C. Xiang, K. M. Papadantonakis, and N. S. Lewis, Principles and implementations of electrolysis systems for water splitting, Mater. Horiz., 3, 169 (2016).   DOI
14 D. J. Deka, S. Gunduz, J. S. Kim, T. Fitzgerald, Y. Shi, A. C. Co, and U. S. Ozkan, Hydrogen production from water in a solid oxide electrolysis cell: Effect of Ni doping on lanthanum strontium ferrite perovskite cathodes, Ind. Eng. Chem. Res., 58(50), 22497 (2019).   DOI
15 P. Bhanja, B. Mohanty, A. K. Patra, S. Ghosh, B. K. Jena, and A. Bhaumik, IrO2 and Pt doped mesoporous SnO2 nanospheres as efficient electrocatalysts for the facile OER and HER, ChemCatChem, 11(1), 583 (2019).   DOI
16 W. Sun, W. Q. Zaman, C. Ma, J. Liao, C. Ge, and J. Yang, Cerium surface-engineered iridium oxides for enhanced oxygen evolution reaction activity and stability, ACS Appl. Energy Mater., 3(5), 4432 (2020).   DOI
17 X. Kong, K. Xu, C. Zhang, J. Dai, S. N. Oliaee, L. Li, X. Zeng, C. Wu, and Z. Peng, Free-standing twodimensional Ru nanosheets with high activity toward water splitting, ACS Catal., 6(3), 1487 (2016).   DOI
18 Y. Chen, Q. Zhong, G. Li, T. Tian, J. Tan, and M. Pan, Electrochemical study of temperature and Nafion effects on interface property for oxygen reduction reaction, Ionics, 24, 3905 (2018).   DOI
19 J. Yi, W. H. Lee, C. H. Choi, Y. Lee, K. S. Park, B. K. Min, Y. J. Hwang, and H.-S. Oh, Effect of Pt introduced on Ru-based electrocatalyst for oxygen evolution activity and stability, Electrochem. Commun., 104, 106469 (2019).   DOI
20 S. Niu, X. -P. Kong, S. Li, Y. Zhang, J. Wu, W. Zhao, and P. Xu, Low Ru loading RuO2/(Co,Mn)3O4 nanocomposite with modulated electronic structure for efficient oxygen evolution reaction in acid, Appl. Catal. B, 297, 120442 (2021).   DOI
21 R. Huang, Y. Wen, H. Peng, and B. Zhang, Improved kinetics of OER on Ru-Pb binary electrocatalyst by decoupling proton-electron transfer, Chinese J. Catal., 43(1), 130 (2022).   DOI
22 Y. Pi, Q. Shao, P. Wang, J. Guo, and X. Huang, General formation of monodisperse IrM (M = Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting, Adv. Funct. Mater., 27(27), 1700886 (2017).   DOI
23 W. Jin, H. Wu, W. Cai, B. Jia, M. Batmunkh, Z. Wu, and T. Ma, Evolution of interfacial coupling interaction of Ni-Ru species for pH-universal water splitting, Chem. Eng. J., 426, 130762 (2021).   DOI
24 B. Huang, H. Xu, N. Jiang, M. Wang, J. Huang, and L. Guan, Tensile-strained RuO2 loaded on antimony-tin oxide by fast quenching for proton-exchange membrane water electrolyzer, Adv. Sci., 9(23), 2201654 (2022)   DOI
25 E. Oakton, D. Lebedev, M. Povia, D. F. Abbott, E. Fabbri, A. Fedorov, M. Nachtegaal, C. Coperet, and T. J. Schmidt, IrO2-TiO2: A high-surface-area, active, and stable electrocatalyst for the oxygen evolution reaction, ACS Catal., 7(4), 2346 (2017).   DOI
26 J. S. Kim, B. H. Kim, H. A. Kim, and K. S. Kang, Recent progress on multimetal oxide catalysts for the oxygen evolution reaction, Adv. Energy Mater., 8(11), 1702774 (2018).   DOI
27 I. Staffell, D. Scamman, A. V. Abad, P. Balcombe, P. E. Dodds, P. Ekins, N. Shah, and K. R. Ward, The role of hydrogen and fuel cells in the global energy system, Energy Environ. Sci., 12(2), 463 (2019).   DOI
28 Y. Li, L. Xing, D. Yu, A. Libanori, K. Yang, J. Sun, A. Nashalian, Z. Zhu, Z. Ma, Y. Zha, and J. Chen, Hollow IrCo nanoparticles for high-performance overall water splitting in an acidic medium, ACS Appl. Nano Mater., 3(12), 11916 (2020).   DOI
29 A. Choudhury, H. Chandra, and A. Arora, Application of solid oxide fuel cell technology for power generation-A review, Renew. Sust. Energ. Rev., 20, 430 (2013).   DOI
30 X. Chen, W. Li, N. Song, M. Zhong, S. Yan, J. Xu, W. Zhu, C. Wang, and X. Lu, Electronic modulation of iridium-molybdenum oxides with a low crystallinity for high-efficiency acidic oxygen evolution reaction, Chem. Eng. J., 440, 135851 (2022).   DOI
31 H.-B. Wang, J.-Q. Wang, N. Mintcheva, M. Wang, S. Li, J. Mao, H. Liu, C.-K. Dong, S. A. Kulinich, and X.-W. Du, Laser synthesis of iridium nanospheres for overall water splitting, Materials, 12(18), 3028 (2019).   DOI
32 X. Wu, B. Feng, W. Li, Y. Niu, Y. Yu, S. Lu, C. Zhong, P. Liu, Z. Tian, L. Chen, W. Hu, and C. M. Li, Metalsupport interaction boosted electrocatalysis of ultrasmall iridium nanoparticles supported on nitrogen doped graphene for highly efficient water electrolysis in acidic and alkaline media, Nano Energy, 62, 117 (2019).   DOI