Browse > Article
http://dx.doi.org/10.9713/kcer.2014.52.3.279

Electrochemical Reduction Process for Pyroprocessing  

Choi, Eun-Young (Korea Atomic Energy Research Institute)
Hong, Sun-Seok (Korea Atomic Energy Research Institute)
Park, Wooshin (Korea Atomic Energy Research Institute)
Im, Hun Suk (Korea Atomic Energy Research Institute)
Oh, Seung-Chul (Korea Atomic Energy Research Institute)
Won, Chan Yeon (Korea Atomic Energy Research Institute)
Cha, Ju-Sun (Korea Atomic Energy Research Institute)
Hur, Jin-Mok (Korea Atomic Energy Research Institute)
Publication Information
Korean Chemical Engineering Research / v.52, no.3, 2014 , pp. 279-288 More about this Journal
Abstract
Nuclear energy is expected to meet the growing energy demand while avoiding CO2 emission. However, the problem of accumulating spent fuel from current nuclear power plants which is mainly composed of uranium oxides should be addressed. One of the most practical solutions is to reduce the spent oxide fuel and recycle it. Next-generation fuel cycles demand innovative features such as a reduction of the environmental load, improved safety, efficient recycling of resources, and feasible economics. Pyroprocessing based on molten salt electrolysis is one of the key technologies for reducing the amount of spent nuclear fuel and destroying toxic waste products, such as the long-life fission products. The oxide reduction process based on the electrochemical reduction in a LiCl-$Li_2O$ electrolyte has been developed for the volume reduction of PWR (Pressurized Water Reactor) spent fuels and for providing metal feeds for the electrorefining process. To speed up the electrochemical reduction process, the influences of the feed form for the cathode and the type of anode shroud on the reduction rate were investigated.
Keywords
Pyroprocessing; Electrochemical Reduction; Molten Salt; Uranium Oxide;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Laidler, J. J., Battles, J. E., Miller, W. E. and Ackerman, J. P. and Carls, E. L., "Development of Pyroprocessing Technology," Prog. Nucl. Energy., 31, 131-140(1997).   DOI   ScienceOn
2 IAEA, International Status and Prospects of Nuclear Power, 2008.
3 IAEA, Spent Fuel Reprocessing Options, IAEA-TECDOC-1587, 2008.
4 Willit, J. L., Miller, W. E. and Battles, J. E., "Electrorefining of Uranium and Plutonium-A Literature Review," J. Nucl. Mater., 195, 229-249(1992).   DOI   ScienceOn
5 Benedict, R. W. and McFarlane, H. F., "EBR-II Spent Fuel Treatment Demonstration Project Status," Radwaste Magazine., 5, 23 (1998).
6 Konings, J., Serp. R. J. M., Malmbeck, R., Rebizant, J., Scheppler, C. and Glatz, J.-P., "Electrochemical Behavior of Plutonium ion in LiCl-KCl Eutectic Melts," J. Electroanal. Chem., 561, 143-148 (2004).   DOI   ScienceOn
7 Goff, K. M., Benedict, R. W., Howden, K. L., Teske, G. M. and Johnson, T. A., "Pyrochemical Treatment of Spent Nuclear Fuel," Proc. of Global 2005, Tsukuba, Japan, October 9-13(2005).
8 Inoue, T. and Koch, L., "Development of Pyroprocessing and Its Future Direction," Nucl. Eng. Technol., 40, 183-190(2008).   DOI
9 Koyama, T., Sakamura, Y., Ogata, T. and Kobayashi, H., "Pyroprocess and Metal Fuel Development for Closing Actinide Fuel Cycle with Reduced Waste Burden," Proc. Of Global 2009, Paris, France, September 6-11(2009).
10 Simpson, M. F. and Herrmann, S. D., "Modeling the Pyrochemical Reduction of Spent $UO_2$ Fuel in a Pilot-Scale Reactor," Nucl. Technol., 162, 179-183(2008).
11 Yoo, J.-H., Seo, C.-S., Kim, E.-H. and Lee, H., "A Conceptual Study of Pyroprocessing for Recovering Actinides," Nucl. Eng. Technol., 40, 581-592(2008).   과학기술학회마을   DOI
12 Kitawaki, S., Shinozaki, T., Fukushima, M., Usami, T., Yahagi, N. and Kurata, M., "Recovery of U-Pu Alloy from MOX Using Pyroprocess Series," Nucl. Technol., 162, 118-123(2008).
13 Murakami, T., Uozumi, K., Sakamura, Y., Iizuka, M., Ohta, H., Ogata, T. and Koyama, T., "Recent Achievements and Remaining Challenges on Pyrochemical Reprocessing in CRIEPI," Proc. Of the First ACSEPT International Workshop Lisbon, Portugal, March 31-April 2(2010).
14 Song, K.-C., Lee, H., Hur, J.-M., Kim, J.-G., Ahn, D.-H. and Cho, Y.-Z., "Status of Pyroprocessing Technology Development in Korea," Nucl. Eng. Technol., 42, 131-144(2010).   과학기술학회마을   DOI
15 Yasuda, K., Nohira, T., Hagiwara, R. and Ogata, Y. H. "Direct Electrolytic Reduction of Solid $SiO_2$ in Molten $CaCl_2$ for the Production of Solar Grade Silicon," Electrochim. Acta, 53, 106-110(2007).   DOI   ScienceOn
16 Goff, K. M., Wass, J. C., Marsden, K. C. and Teske, G. M., "Electrochemical Reprocessing of Used Nuclear Fuel," Nucl. Eng. Technol., 43, 335-342(2011).   DOI   ScienceOn
17 Lee, H., Park, G.-I., Kang, K.-H., Hur, J.-M., Kim, J.-G., Ahn, D.-H., Cho, Y.-Z. and Kim, E. H., "Pyroprocessing Technology Development at KAERI," Nucl. Eng. Technol., 43, 317-328(2011).   과학기술학회마을   DOI
18 Chen, G. Z., Fray, D. J. and Farthing, T. W., "Direct Electrochemical Reduction of Titanium Dioxide to Titanium in Molten Calcium Chloride," Nature., 407, 361-364(2000).   DOI   ScienceOn
19 Jeong, S. M., Jung, J. Y., Seo, C. S. and Park, S. W., "Characteristics of An Electrochemical Reduction of $Ta_2O_5$ for the Preparation of Metallic Tantalum in a $LiCl-Li_2O$ Molten Salt," J. Alloy Compd., 440, 210-215(2007).   DOI   ScienceOn
20 Wang, S. I., Haarberg, G. M. and Kvalheim, E., "Electrochemical Behavior of Dissolved $Fe_2O_3$ in Molten $CaCl_2-KF$," J. Iron Steel Res., 16, 48-51(2008).
21 Gibilaro, M., Pivato, J., Cassayre, L., Massot, L., Chamelot, L. P. and Taxil, P., "Direct Electroreduction of Oxides in Molten Fluoride Salts," Electrochim. Acta., 56, 5410-5415(2011).   DOI   ScienceOn
22 Jeong, S. M., Yoo, H. Y., Hur, J.-M. and Seo, C.-S., "Preparation of Metallic Niobium from Niobium Pentoxide by An Indirect Electrochemical Reduction in a LiCl-$Li_2O$ Molten Salt," J. Alloy Compd., 452, 27-31(2008).   DOI   ScienceOn
23 Wang, D., Jina, X. and Chen, G. Z., "Solid State Reactions: An Electrochemical Approach in Molten Salts," Annu. Rep. Prog. Chem. Sect. C, 104, 189-234(2008).   DOI   ScienceOn
24 Chen, G. Z., Gordo, E. and Fray, D. J., "Direct Electrolytic Preparation of Chromium Powder," Metall. Mater. Trans. B., 35, 223-233(2004).   DOI
25 Claux, B., Serp, J. and Fouletier, J., "Electrochemical Reduction of Cerium Oxide Into Metal," Electrochim. Acta., 56, 2771-2780 (2011).   DOI   ScienceOn
26 Abdelkader, A. M., Tripuraneni Kilby, K., Cox, A. and Fray, D. J., "DC Voltammetry of Electro-deoxidation of Solid Oxides," Chem. Rev., 113, 2863-2886(2013).   DOI   ScienceOn
27 Hur, J.-M., Seo, C. S., Hong, S. S., Kang, D. S. and Park, S. W., "Metallization of $U_3O_8$ Via Catalytic Electrochemical Reduction with $Li_2O$ in LiCl Molten Salt," React. Kinet. Catal. Lett., 80, 217(2003).   DOI   ScienceOn
28 Jeong, S. M., Park, S.-B., Hong, S.-S., Seo, C.-S. and Park, S.-W., "Electrolytic Production of Metallic Uranium from $U_3O_8$ in a 20 kgbatch Scale Reactor," J. Radioanal. Nucl. Chem., 268, 349-356 (2006).   DOI   ScienceOn
29 Park, S. B., Park, B. H., Jeong, S. M., Hur, J. M., Seo, C.-S., Choi, S.-H. and Park, S. W., "Characteristics of An Integrated Cathode Assembly for the Electrolytic Reduction of Uranium Oxide in a LiCl-$Li_2O$ Molten Salt," J. Radioanal. Nucl. Chem., 268, 489-495(2006).   DOI   ScienceOn
30 Sakamura, Y., Omori, T. and Inoue, T., "Application of Electrochemical Reduction to Produce Metal Fuel Material From Actinide Oxides," Nucl. Technol., 162, 169-178(2008).
31 Hur, J.-M., Kim, T.-J., Choi, I.-K., Do, J. B., Hong, S.-S. and Seo, C.-S., "Chemical Behavior of Fission Products in the Petrochemical Process," Nucl. Technol., 162, 192-198(2008).
32 Wang, D., Qiu, G., Jin, X., Hu, X. and Chen, G. Z., "Electrochemical Metallization of Solid Terbium Oxide," Angew. Chem. Int. Ed., 45, 2384-2388(2006).   DOI   ScienceOn
33 Yan, X. Y. and Fray, D. J., "Production of Niobium Powder by Direct Electrochemical Reduction of Solid $Nb_2O_5$ in a Eutectic $CaCl_2$-NaCl Melt," Metall. Mater. Trans. B., 33, 685-693(2002).   DOI   ScienceOn
34 Xu, Q., Deng, L.-Q., Wu, Y. and Ma, T., "A Study of Cathode Improvement for Electro-deoxidation of $Nb_2O_5$ in a Eutectic $CaCl_2$-NaCl Melt at 1073K," J. Alloy Compd., 396, 288-294(2005).   DOI
35 Sakamura, Y., Kurata, M. and Inoue, T., "Electrochemical Reduction of $UO_2$ in Molten $CaCl_2$ or LiCl," J. Electrochem. Soc., 153, D31-D39(2006).   DOI   ScienceOn
36 Herrmann, S. D., Li, S. X., Simpson, M. F. and Phongikarroon, S., "Electrolytic Reduction of Spent Nuclear Oxide Fuel as Part of an Integral Process to Separate and Recover Actinides from Fission Product," Sep. Sci. Technol., 41, 1965-1983(2006).   DOI   ScienceOn
37 Herrmann, S. D., Li, S. X. and Simpson, M. F., "Electrolytic Reduction of Spent Light Water Reactor Fuel: Bench-scale Experiment Results," J. Nucl. Sci. Technol., 44, 361-367(2007).   DOI
38 Herrmann, S. D. and Li, S. X., "Separation and Recovery of Uranium Metal From Spent Light Water Reactor Fuel Via Electrolytic Reduction and Electrorefining," Nucl. Tech., 171, 247-265(2010).
39 Choi, E.-Y., Won, C. Y., Cha, J.-S., Park, W., Im, H.-S., Hong, S. S. and Hur, J.-M., "Electrochemical Reduction of $UO_2$ in LiCl-$Li_2O$ Molten Salt Using Porous and Nonporous Anode Shrouds," J. Nucl. Mater., 444, 261-269(2014).   DOI   ScienceOn
40 Choi, E.-Y., Lee, J. W., Park, J. J., Hur, J.-M., Kim, J.-K., Jung, K. Y. and Jeong, S. M., "Electrochemical Reduction Behavior of a Highly Porous SIMFUEL Particle in a LiCl Molten Salt," Chem. Eng. J., 207-208, 514-520(2012).   DOI   ScienceOn
41 Choi, E.-Y., Hur, J.-M., Choi, I.-K., Kwon, S. G., Kang, D.-S., Hong, S. S., Shin, H.-S., Yoo, M. A. and Jeong, S. M., "Electrochemical Reduciton of Porous 17 kg Uranium Oxide Pellets by Selection of an Optimal Cathode/anode Surface Area Ratio," J. Nucl. Mater., 418, 87-92(2011).   DOI   ScienceOn
42 Choi, E.-Y., Kim, J.-K., Im, H.-S., Choi, I.-K., Na, S.-H., Lee, J. W., Jeong, S. M. and Hur, J.-M., "Effect of the $UO_2$ form on the Electrochemical Reduction Rate in a LiCl-$Li_2O$ Molten Salt," J. Nucl. Mater., 437, 178-187(2013).   DOI   ScienceOn
43 Karell, E. J. and Gourishankar, K. V., "Separation of Actinides from LWR Spent Fuel Using Molten Salt Based Electrochemical Process," Nucl. Tech., 136, 342-353(2001).
44 Inoue, T., Koyama, T. and Arai, Y., "State of the Art of Pyroprocessing Technology in Japan," Energy Procedia., 7, 405-413(2011).   DOI   ScienceOn
45 Nagarajan, K., Prabhakara Reddy, B., Ghosh, S., Ravisankar, G., Mohandas, K. S., Kamachi Mudali, U., Kutty, K. V. G., Kasi Viswanathan, K. V., Anand Babu, C., Kalyanasundaram, P., Vasudeva Rao, P. R. and Raj, B., "Development of Pyrochemical Reprocessing for Spent Metal Fuels," Energy Procedia., 7, 405-413(2011).   DOI   ScienceOn
46 Gordo, E., Chen, G. Z. and Fray, D. J., "Toward Optimisation of Electrolytic Reduction of Solid Chromium Oxide to Chromium Powder in Molten Chloride Salts," Electrochim. Acta., 49, 2195-2208(2004).   DOI   ScienceOn