Browse > Article
http://dx.doi.org/10.9713/kcer.2019.57.2.267

Application of Hierarchically Porous Fe2O3 Nanofibers for Anode Materials of Lithium-ion Batteries  

Jo, Min Su (Department of Engineering Chemistry, Chungbuk National University)
Cho, Jung Sang (Department of Engineering Chemistry, Chungbuk National University)
Publication Information
Korean Chemical Engineering Research / v.57, no.2, 2019 , pp. 267-273 More about this Journal
Abstract
Hierarchically porous $Fe_2O_3$ nanofibers with meso- and macro- pores are designed and synthesized by electrospinning and subsequent heat-treatment. The macro pores are generated by selectively decomposition of polystyrene as a dispersed phase in the as-spun fibers containing $Fe(acac)_3$/polyacrylonitrile continuous phases during heat-treatment. Additionally, meso-pores formed by evaporation of infiltrated water vapor during electrospinning process interconnected the macro-pores and results in the formation of hierarchically porous $Fe_2O_3$ nanofibers. The initial discharge capacity and Coulombic efficiency of the hierarchically porous $Fe_2O_3$ nanofibers at a current density of $1.0A\;g^{-1}$ are $1190mA\;h\;g^{-1}$ and 79.2%. Additionally, the discharge capacity of the nanofibers is $792mA\;h\;g^{-1}$ after 1,000 cycles. The high structural stability and morphological benefits of the hierarchically porous $Fe_2O_3$ nanofibers resulted in superior lithium ion storage performance.
Keywords
Porous structure; Iron oxide; Electrospinning; Anodes; Lithium ion batteries;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu, J., Li, Y., Fan, H., Zhu, Z., Jiang, J., Ding, R., Hu, Y. and Huang, X., "Iron Oxide-Based Nanotube Arrays Derived from Sacrificial Template-Accelerated Hydrolysis: Large-Area Design and Reversible Lithium Storage," Chem. Mater., 22(1), 212-217 (2009).   DOI
2 Zhao, Y., Li, J., Ding, Y. and Guan, L., "Single-Walled Carbon Nanohorns Coated with $Fe_2O_3$ as a Superior Anode Material for Lithium Ion Batteries," Chem. Commun., 47(26), 7416-7418(2011).   DOI
3 Cho, J. S., Park, J.-S. and Kang, Y. C., "Porous FeS Nanofibers with Numerous Nanovoids Obtained by Kirkendall Diffusion Effect for Use as Anode Materials for Sodium-Ion Batteries," Nano Res., 10(3), 897-907(2017).   DOI
4 Su, L., Zhong, Y. and Zhou, Z., "Role of Transition Metal Nanoparticles in the Extra Lithium Storage Capacity of Transition Metal Oxides:A Case Study of Hierarchical Core-Shell $Fe_3O_4@C$ and Fe@C Microspheres," J. Mater. Chem. A, 1(47), 15158-15166(2013).   DOI
5 Cho, J. S., Hong, Y. J., Lee, J.-H. and Kang, Y. C., "Design and Synthesis of Micron-Sized Spherical Aggregates Composed of Hollow $Fe_2O_3$ Nanospheres for Use in Lithium-ion Batteries," Nanoscale, 7(18), 8361-8367(2015).   DOI
6 Wang, B., Chen, J. S., Wu, H. B., Wang, Z. and Lou, X. W., "Quasiemulsion-Templated Formation of ${\alpha}$-$Fe_2O_3$ Hollow Spheres with Enhanced Lithium Storage Properties," J. Am. Chem. Soc., 133(43), 17146-17148(2011).   DOI
7 Zhou, J., Song, H., Chen, X., Zhi, L., Yang, S., Huo, J. and Yang, W., "Carbon-Encapsulated Metal Oxide Hollow Nanoparticles and Metal Oxide Hollow Nanoparticles: a General Synthesis Strategy and its Application to Lithium-Ion Batteries," Chem. Mater., 21(13), 2935-2940(2009).   DOI
8 Alias, N. and Mohamad, A. A., "Advances of Aqueous Rechargeable Lithium-Ion Battery: A Review," J. Power Sources, 274, 237-251(2015).   DOI
9 Zhao, Y., Li, X., Yan, B., Li, D., Lawes, S. and Sun, X., "Significant Impact of 2D Graphene Nanosheets on Large Volume Change Tin-Based Anodes in Lithium-Ion Batteries: A Review," J. Power Sources, 274, 869-884(2015).   DOI
10 Zhao, Y., Wang, L. P., Sougrati, M. T., Feng, Z., Leconte, Y., Fisher, A., Srinivasan, M. and Xu, Z., "A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes," Adv. Energy Mater., 7(9), 1601424(2017).   DOI
11 Du, M., Xu, C., Sun, J. and Gao, L., "One Step Synthesis of $Fe_2O_3$/Nitrogen-Doped Graphene Composite as Anode Materials for Lithium Ion Batteries," Electrochim. Acta, 80, 302-307 (2012).   DOI
12 Goriparti, S., Miele, E., Angelis, F. D., Fabrizio, E. D., Zaccaria, R. P. and Capiglia, C., "Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries," J. Power Sources, 257, 421-443(2014).   DOI
13 Du, Z., Zhang, S., Zhao, J., Wu, X. and Lin, R., "Synthesis and Characterization of Hollow ${\alpha}$-$Fe_2O_3$ Spheres with Carbon Coating for Li-Ion Battery," J. Nanosci. Nanotechnol., 13(5), 3602-3605(2013).   DOI
14 Zhu, J., Yin, Z., Yang, D., Sun, T., Yu, H., Hoster, H. E., Hng, H. H., Zhang, H. and Yan, Q., "Hierarchical Hollow Spheres Composed of Ultrathin $Fe_2O_3$ Nanosheets for Lithium Storage and Photocatalytic Water Oxidation," Energy Environ. Sci., 6(3), 987-993(2013).   DOI
15 Zhang, L., Wu, H. B., Madhavi, S., Hng, H. H. and Lou, X. W., "Formation of $Fe_2O_3$ Microboxes with Hierarchical Shell Structures from Metal-Organic Frameworks and Their Lithium Storage Properties," J. Am. Chem. Soc., 134(42), 17388-17391(2012).   DOI
16 Sasidharan, M., Gunawardhana, N., Yoshio, M. and Nakashima, K., "${\alpha}$-$Fe_2O_3$ and $Fe_3O_4$ Hollow Nanospheres as High-Capacity Anode Materials for Rechargeable Li-Ion Batteries," Ionics, 19(1), 25-31(2013).   DOI
17 Xiao, H., Xia, Y., Zhang, W., Huang, H., Gan, Y. and Tao, X., "Template-Free Synthesis of Hollow ${\alpha}$-$Fe_2O_3$ Microcubes for Advanced Lithium-Ion Batteries," J. Mater. Chem. A, 1(6), 2307-2312(2013).   DOI
18 Chen, Y., Wang, J., Jiang, J., Zhou, M., Zhu, J. and Han, S., "Self-Assembled Graphene-Constructed Hollow $Fe_2O_3$ Spheres with Controllable Size for High Lithium Storage," RSC Adv., 5(28), 21740-21744(2015).   DOI
19 Kim, S.-O. and Manthiram, A., "A Facile, Low-Cost Synthesis of High-Performance Silicon-Based Composite Anodes with High Tap Density for Lithium-Ion Batteries," J. Mater. Chem. A, 3(5), 2399-2406(2015).   DOI
20 Wu, C., Zhuang, Q.-C., Tian, L.-L., Wu, Y.-X., Ju, Z.-C., Zhang, H., Zhang X.-X. and Chen, H.-B., "Synthesis and The Comparative Lithium Storage Properties of Hematite: Hollow Structures vs. Carbon Composites," RSC Adv., 5(27), 21405-21414(2015).   DOI
21 Cho, J. S., Hong, Y. J. and Kang, Y. C., "Design and Synthesis of Bubble-Nanorod-Structured $Fe_2O_3$-Carbon Nanofibers as Advanced Anode Material for Li-Ion Batteries," ACS Nano, 9(4), 4026-4035(2015).   DOI
22 Zou, Y., Kan, J. and Wang, Y., "$Fe_2O_3$-Graphene Rice-on-Sheet Nanocomposite for High and Fast Lithium Ion Storage," J. Phys. Chem. C, 115(42), 20747-20753(2011).   DOI
23 Sun, M., Sun, M., Yang, H., Song, W., Nie, Y. and Sun, S., "Porous $Fe_2O_3$ Nanotubes as Advanced Anode for High Performance Lithium Ion Batteries," Ceram. Int., 43(1), 363-367(2017).   DOI
24 Xu, X., Cao, R., Jeong, S. and Cho, J., "Spindle-like Mesoporous ${\alpha}$-$Fe_2O_3$ Anode Material Prepared from MOF Template for High-Rate Lithium Batteries," Nano Lett., 12(9), 4988-4991(2012).   DOI
25 Son, M. Y., Hong, Y. J., Lee, J.-K. and Kang, Y. C., "One-Pot Synthesis of $Fe_2O_3$ Yolk-Shell Particles with Two, Three, and Four Shells for Application as an Anode Material in Lithium-Ion Batteries," Nanoscale, 5(23), 11592-11597(2013).   DOI
26 Cho, J. S., Lee, J.-K. and Kang, Y. C., "Graphitic Carbon-Coated $FeSe_2$ Hollow Nanosphere-Decorated Reduced Graphene Oxide Hybrid Nanofibers as an Efficient Anode Material for Sodium Ion Batteries," Sci. Rep., 6, 23699(2016).   DOI
27 Cho, J. S., Park, J.-S., Jeon, K. M. and Kang, Y. C., "1-D Nanostructure Comprising Porous $Fe_2O_3$/Se Composite Nanorods with Numerous Nanovoids, and Their Electrochemical Properties for Use in Lithium-Ion Batteries," J. Mater. Chem. A, 5(21), 10632-10639(2017).   DOI
28 Xie, J. L., Guo, C. X. and Li, C. M., "Construction of One-Dimensional Nanostructures on Graphene for Efficient Energy Conversion and Storage," Energy Environ. Sci., 7(8), 2559-2579 (2014).   DOI
29 Padashbarmchi, Z., Hamidian, A. H., Zhang, H., Zhou, L., Khorasani, N., Kazemzad, M. and Yu, C., "A Systematic Study on The Synthesis of ${\alpha}$-$Fe_2O_3$ Multi-Shelled Hollow Spheres," RSC Adv., 5(14), 10304-10309(2015).   DOI
30 Wu, Z.-G., Zhong, Y.-J., Li, J.-T., Guo, X.-D., Huang, L., Zhong, B.-H. and Sun, S.-G., "L-Histidine-Assisted Template-Free Hydrothermal Synthesis of ${\alpha}$-$Fe_2O_3$ Porous Multi-Shelled Hollow Spheres with Enhanced Lithium Storage Properties," J. Mater. Chem. A, 2(31), 12361-12367(2014).   DOI
31 Wang, Z., Zhou, L. and Lou, X. W., "Metal Oxide Hollow Nanostructures for Lithium Ion Batteries," Adv. Mater., 24(14), 1903-1911 (2012).   DOI
32 Furushima, Y., Nakada, M., Takahashi, H. and Ishikiriyama, K. "Study of Melting and Crystallization Behavior of Polyacrylonitrile Using Ultrafast Differential Scanning Calorimetry," Polymer, 55(13), 3075-3081(2014).   DOI
33 Li, L., Peng, S., Lee, J. K. Y., Ji, D., Srinivasan, M. and Ramakrishna, S., "Electrospun Hollow Nanofibers for Advanced Secondary Batteries," Nano Energy, 39, 111-139(2017).   DOI
34 Nikmaram, N., Roohinejad, S., Hashemi, S., Koubaa, M., Barba, F. J., Abbaspourrad, A. and Greiner, R., "Emulsion-Based Systems for Fabrication of Electrospun Nanofibers: Food, Pharmaceutical and Biomedical Applications," RSC Adv., 7(46), 28951-28964(2017).   DOI
35 Lu, P. and Xia, Y., "Maneuvering the Internal Porosity and Surface Morphology of Electrospun Polystyrene Yarns by Controlling the Solvent and Relative Humidity," Langmuir, 29(23), 7070-7078 (2013).   DOI
36 Pal, B. and Sharon, M., "Preparation of Iron Oxide Thin Film by Metal Organic Deposition from Fe(III)-Acetylacetonate: A Study of Photocatalytic Properties," Thin Solid Films, 379(1-2), 83-88 (2000).   DOI
37 Cho, J. S. and Kang, Y. C., "All-in-One Beaker Method for Large-Scale Production of Metal Oxide Hollow Nanospheres Using Nanoscale Kirkendall Diffusion," ACS Appl. Mater. Interfaces, 8(6), 3800-3809(2016).   DOI
38 Jo, E., Yeo, J.-G., Kim, D. K., Oh, J. S. and Hong, C.-K., "Preparation of Well Controlled Porous Carbon Nanofiber Materials by Varying the Compatibility of Polymer Blends," Polym. Int., 63(8), 1471-1477(2014).   DOI