• Title/Summary/Keyword: anode powder

Search Result 134, Processing Time 0.045 seconds

Synthesis of the Multi-layered SnO Nanoparticles and Enhanced Performance of Lithium-Ion Batteries by Heat treatment (다층 산화주석(SnO)의 합성 및 열처리를 통한 리튬이온 이차전지 음극 소재의 성능 향상)

  • Lee, So Yi;Myung, Yoon;Lee, Kyu-Tae;Choi, Jaewon
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.455-461
    • /
    • 2021
  • In this study, multilayered SnO nanoparticles are prepared using oleylamine as a surfactant at 165℃. The physical and chemical properties of the multilayered SnO nanoparticles are determined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Interestingly, when the multilayered SnO nanoparticles are heated at 400℃ under argon for 2 h, they become more efficient anode materials, maintaining their morphology. Heat treatment of the multilayered SnO nanoparticles results in enhanced discharge capacities of up to 584 mAh/g in 70 cycles and cycle stability. These materials exhibit better coulombic efficiencies. Therefore, we believe that the heat treatment of multilayered SnO nanoparticles is a suitable approach to enable their application as anode materials for lithium-ion batteries.

Study on high efficient phosphor layer using conductive powder particle in field emission light source (전계방출광원에서 전도성 입자를 이용한 고효율 형광막 특성 연구)

  • Jeong, Se-Jeong;Kim, Gwang-Bok;Lee, Seon-Hui;Kim, Yong-Won
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.3-6
    • /
    • 2007
  • The Light brightness is to enhance the luminescence efficiency of phosphor including conductive material. In preparing the anode layer, phosphors mixed with conductive material prepared with pastes of polymer resin using by screen printing method. When the prepared anode layer bombarded by cold electron from emitter of cathode, it give rise to form the secondary electron from those of conductive materials such as ITO powder. Furthermore, we are expect to enhance the luminescence efficiency more than without conductive material.

  • PDF

Characteristics and unit cell fabrication of molten carbonate fuel cell (용융탄산염형 연료전지의 단위전지 제작과 특성)

  • 엄승욱;김귀열
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.768-773
    • /
    • 1995
  • We describe a manufacturing method and characteristics on components of molten carbonate fuel cell. Cr, Al, AI$_{2}$O$_{3}$, Co, MgO powder were mixed with Ni powder for anode components and NiO was used for cathode electrode. The electrolyte plate consisted of LiAIO$_{2}$ and carbonate (Li$_{2}$CO$_{3}$/K$_{2}$CO$_{3}$=62/38) and these three were manufactured by doctor-blade method. As a result, open circuit voltage was 1.05[VI at Ni-10Cr anode and porosity was above 60[%].

  • PDF

Fabrication Characteristics and Electrochemical Studies of SOFC Unit Cell using ScSZ-based Electrolyte Powder prepared by Co-precipitation Synthesis (공침법에 의한 고체산화물연료전지용 ScSZ계 전해질의 제조공정 특성 및 전기화학적 평가)

  • Kang, Ju Hee;Lee, Ho Jae;Kim, Ho-Sung;Jeong, Jong Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.138.2-138.2
    • /
    • 2010
  • Scandium-doped zirconium, ScSZ-based electrolyte, provides higher oxygen conductivity than YSZ and nano-based electrolyte materials are ideal for fabricating thin film electrolyte membrane of SOFC unit cell. Moreover, it may be applied to anode and cathode as well as electrolyte as ionic conductor. In this report, nano-based ScSZ-based electrolyte powder was prepared by co-precipitation synthesis. The particle size, surface area and morphology of the powder were observed by SEM and BET. Thin film electrolyte of under $10{\mu}m$ was fabricated by tape casting and co-firing using the synthesized ScSZ-based powders, and ionic conductivity and gas permeability of electrolyte film were evaluated. Finally, the SOFC unit cell was fabricated using the anode-supported electrolyte prepared by a tape casting method and co-sintering. Electrochemical evaluations of the SOFC unit cell, including measurements such as power density and impedance, were performed and analyzed.

  • PDF

The Research on Aluminum and Silcon Nanoparticles as Anode Materials for Lithium Ion Batteries (알루미늄 실리콘 나노분말을 이용한 리튬이온전지 음극재료에 관한 연구)

  • Kim, Hyeong-Jo;Tulugan, Kelimu;Kim, Hyung-Jin;Park, Won-Jo
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.110-115
    • /
    • 2013
  • The electrochemical performance and microstructure of Al-Si, Al-Si/C was investigated as anode for lithium ion battery. The Al-Si nano composite with 5 : 1 at% ratio was prepared by arc-discharge nano powder process. However, some of problem is occurred, when Al nano composite was synthesized by this manufacturing. The oxidation film is generated around Al-Si particles for passivating processing in the manufacture. The oxidation film interrupts electrical chemistry reaction during lithium ion insertion/extraction for charge and discharge. Because of the existence the oxidation film, Al-Si first cycle capacity is very lower than other examples. Therefore, carbon synthsized by glucose ($C_6H_{12}O_6$) was conducted to remove the oxidation film covered on the composite. The results showed that the first discharge cycle capacity of Al-Si/C is improved to 113mAh/g comparing with Al-Si (18.6mAh/g). Furthermore, XRD data and TEM images indicate that $Al_4C_3$ crystalline exist in Al-Si/C composite. In addition the Si-Al anode material, in which silicon is more contained was tested by same method as above, it was investigated to check the anode capacity and morphology properties in accordance with changing content of silicon, Si-Al anode has much higher initial discharge capacity(about 500mAh/g) than anode materials based on Aluminum as well as the morphology properties is also very different with the anode based Aluminum.

Preparation and Characterization of Spherical Carbon Composite for Use as Anode Material for Lithium Ion Batteries

  • Ahn, Byoung-Hoon;Lee, Sung-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1331-1335
    • /
    • 2010
  • A novel spherical carbon composite material, in which nanosized disordered carbons are dispersed in a soft carbon matrix, has been prepared and investigated for use as a potential anode material for lithium ion batteries. Disordered carbons were synthesized by ball milling natural graphite in air. The composite was prepared by mixing the ball-milled graphite with petroleum pitch powder, pelletizing the mixture, and pyrolyzing the pellets at $1200^{\circ}C$ in an argon flow. The ballmilled graphite consists of distorted nanocrystallites and amorphous phases. In the composite particle, nanosized flakes are uniformly distributed in a soft carbon matrix, as revealed by X-ray diffractometer (XRD) and transmission electron microscopy (TEM) experiments. The composite is compatible with a pure propylene carbonate (PC) electrolyte and shows high rate capability and excellent cycling performance. The electrochemical properties are comparable to those of hard carbon.

Study on the High Efficiency of Anode Phosphor Electrode for Filed Emission Lamp (II) - Diffused Reflection Layer (전계방출광원용 고효율 에노드 형광막 특성 연구(II) - 난반사막)

  • Lee, Sun-Hee;Kim, Kwang-Bok;Kim, Yong-Won;You, Yong-Chan;Kim, Do-Jin
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.89-91
    • /
    • 2007
  • In order to decrease the degradation of phosphor on anode, many kinds of methods try to do coating of phosphor powders and AI metal layer of anode phosphor, In case of direct coating of phosphor powder, thin and uniform coating process are difficult to cover homogeneous in the surface of phosphor powders and given rise to decrease the brightness, Anti-reflection-layer(ARC) with $TiO_2$, $Al_2O_3$, $Y_2O_3$ showed 103[%] the enhancement of brightness in comparable with normal phosphor layer.

  • PDF

Menadione-Modified Anodes for Power Enhancement in Single Chamber Microbial Fuel Cells

  • Ahmed, Jalal;Kim, Sunghyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3649-3653
    • /
    • 2013
  • As anode fabrication with different materials has been proven to be a successful alternative for enhancing power generation in the microbial fuel cells, a new approach to improved performance of MFCs with the use of menadione/carbon powder composite-modified carbon cloth anode has been explored in this study. Menadione has formal potential to easily accept electrons from the outer membrane cytochromes of electroactive bacteria that can directly interact with the solid surface. Surface bound menadione was able to maintain an electrical wiring with the trans-membrane electron transfer pathways to facilitate extracellular electron transfer to the electrode. In a single chamber air cathode MFC inoculated with aerobic sludge, maximum power density of $1250{\pm}35mWm^{-2}$ was achieved, which was 25% higher than that of an unmodified anode. The observed high power density and improved coulomb efficiency of 61% were ascribed to the efficient electron shuttling via the immobilized menadione.

Effects of Aluminum and Silicon as Additive Materials for the Zinc Anode in Zn-Air Batteries

  • Lee, Yong-Seok;Ryu, Kwang-Sun
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.1
    • /
    • pp.12-20
    • /
    • 2018
  • To solve low cycle efficiency of the zinc anode in Zn-air batteries by corrosion, this study examined the effects of Al as a cathodic protection additive to Zn. The Al-mixed Zn anodes were produced by mixing Zn and Al powder (1, 2, and 3 wt. %). To compare the effects of the Al additive, Si was selected under the same conditions. The morphology and elemental composition of the additives in the Zn were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and inductively coupled plasma - mass spectrometry. The anti-corrosion effects of the Al and Si-mixed Zn anodes were examined by linear polarization. Cyclic voltammetry and charge-discharge tests were conducted to evaluate the electrochemical performance of the Al and Si-mixed Zn anodes. As a result, the Al-mixed Zn anodes showed highest corrosion resistance and cycling performance. Among these, the 2 wt.% Al-mixed Zn anodes exhibited best electrochemical performance.