Browse > Article
http://dx.doi.org/10.4150/KPMI.2021.28.6.455

Synthesis of the Multi-layered SnO Nanoparticles and Enhanced Performance of Lithium-Ion Batteries by Heat treatment  

Lee, So Yi (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University)
Myung, Yoon (Korea Institute of Industrial Technology, Dongnam Regional Division)
Lee, Kyu-Tae (Department of Physics, Inha University)
Choi, Jaewon (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University)
Publication Information
Journal of Powder Materials / v.28, no.6, 2021 , pp. 455-461 More about this Journal
Abstract
In this study, multilayered SnO nanoparticles are prepared using oleylamine as a surfactant at 165℃. The physical and chemical properties of the multilayered SnO nanoparticles are determined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Interestingly, when the multilayered SnO nanoparticles are heated at 400℃ under argon for 2 h, they become more efficient anode materials, maintaining their morphology. Heat treatment of the multilayered SnO nanoparticles results in enhanced discharge capacities of up to 584 mAh/g in 70 cycles and cycle stability. These materials exhibit better coulombic efficiencies. Therefore, we believe that the heat treatment of multilayered SnO nanoparticles is a suitable approach to enable their application as anode materials for lithium-ion batteries.
Keywords
Tin oxide; Lithium ion Batteries; Anode; Heat treatment; Multilayer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Wang, B. Wang, T. Ruan, T. Gao, R. Song, F. Jin, Y. Zhou, D. Wang, H. Liu and S. Dou: ACS Nano, 13 (2019) 12219.   DOI
2 J. G. Han, K. Kim, Y. Lee and N. S. Choi: Adv. Mater., 31 (2019) 1804822.   DOI
3 J. Zhang, Z. Ma, W. Jiang, Y. Zou, Y. Wang and C. Lu: J. Electroanal. Chem., 767 (2016) 49.   DOI
4 Chen, H. Qian, J. Xu, L. Qin, Q.-H. Wu, M. Zheng and Q. Dong: J. Mater. Chem. A, 2 (2014) 9345.   DOI
5 H. Zhang, X. Huang, O. Noonan, L. Zhou and C. Yu: Adv. Funct. Mater., 27 (2017) 1606023.   DOI
6 A. Shukla and N. K. Gaur: Chem. Phys. Lett., 754 (2020) 137717.   DOI
7 L. Liu, F. Xie, J. Lyu, T. Zhao, T. Li and B. G. Choi: J. Power Sources, 321 (2016) 11.   DOI
8 D. Aurbach, A. Nimberger, B. Markovsky, E. Levi, E. Sominski and A. Gedanken: Chem. Mater., 14 (2002) 4155.   DOI
9 W. Jiang, W. Zeng, Z. Ma and Y. Pan: RSC Adv., 4 (2014) 41281.   DOI
10 X. T. Chen, K. X. Wang, Y. B. Zhai, H. J. Zhang, X. Y. Wu, X. Wei and J. S. Chen: Dalton Trans, 43 (2014) 3137.   DOI
11 Y. Cheng, J. Huang, J. Li, L. Cao and H. Qi: Micro & Nano Lett., 13 (2018) 257.   DOI
12 J. Zeng, C. Peng, R. Wang, Y. Liu, C. Cao, X. Wang and J. Liu: Ceram. Int., 45 (2019) 19404.   DOI
13 K. H. Park, J. Choi, H. J. Kim, J. B. Lee and S. U. Son: Chem. Mater., 19 (2007) 3861.   DOI
14 J. Choi, N. Kang, H. Y. Yang, H. J. Kim and S. U. Son: Chem. Mater., 22 (2010) 3586.   DOI
15 J. Choi, J. Jin, J. Lee, J. H. Park, H. J. Kim, D.-H. Oh, J. R. Ahn and S. U. Son: J. Mater. Chem., 22 (2012) 11107.   DOI
16 P. T. Hung, P. D. Hoat, V. X. Hien, H. Y. Lee, S. Lee, J. H. Lee, J. J. Kim and Y. W. Heo: ACS Appl. Mater. Interfaces, 12 (2020) 34274.   DOI
17 Q. Zhao, Y. Tong, Y. Liu and Z. Mingzhe: Ceram. Int., 45 (2019) 17529.   DOI
18 L. Meng, W. Bu, Y. Li, Q. Qin, Z. Zhou, C. Hu, X. Chuai, C. Wang, P. Sun and G. Lu: Sens. Actuators. B, 342 (2021) 130018.   DOI
19 Y. Zhang, Z. Ma, D. Liu, S. Dou, J. Ma, M. Zhang, Z. Guo, R. Chen and S. Wang: J. Mater. Chem. A, 5 (2017) 512.   DOI
20 Y. Hu, K. Xu, L. Kong, H. Jiang, L. Zhang and C. Li: Chem. Eng. J., 242 (2014) 220.   DOI
21 L. Li, C. Zhang and W. Chen: Nanoscale, 7 (2015) 12133.   DOI
22 F. Li, E. Shangguan, J. Li, L. Li, J. Yang, Z. Chang, Q. Li, X.-Z. Yuan and H. Wang: Electrochim. Acta, 178 (2015) 34.   DOI
23 W. Li, A. Sasaki, H. Oozu, K. Aoki, K. Kakushima, Y. Kataoka, A. Nishiyama, N. Sugii, H. Wakabayashi, K. Tsutsui, K. Natori and H. Iwai: Microelectron Reliab, 55 (2015) 402.   DOI
24 J. Zeng, C. Peng, R. Wang, Y. Liu, X. Wang and J. Liu: Ceram. Int., 45 (2019) 1246.   DOI
25 J. H. Shin and J. Y. Song: Nano Converg., 3 (2016) 9.   DOI
26 W. Yue, S. Yang, Y. Ren and X. Yang: Electrochim. Acta, 92 (2013) 412.   DOI
27 Q. Ren, X. Zhang, Y. Wang, M. Xu, J. Wang, Q. Tian, K. Jia, X. Liu, Y. Sui, C. Liu, J. Yun, J. Yan, W. Zhao and Z. Zhang: Sens. Actuators. B, 340 (2021) 129940.   DOI
28 L. Peng, P. Xiong, L. Ma, Y. Yuan, Y. Zhu, D. Chen, X. Luo, J. Lu, K. Amine and G. Yu: Nat. Commun., 8 (2017) 15139.   DOI
29 B. Xu, H. Shen, J. Ge and Q. Tang: Appl. Surf. Sci., 546 (2021) 148814.   DOI
30 H. Zhang, G. Zhang, Z. Li, K. Qu, L. Wang, W. Zeng, Q. Zhang and H. Duan: J. Mater. Chem. A, 4 (2016) 10585.   DOI
31 X. Li, X. Li, L. Fan, Z. Yu, B. Yan, D. Xiong, X. Song, S. Li, K. R. Adair, D. Li and X. Sun: Appl. Surf. Sci., 412 (2017) 170.   DOI
32 J. H. Shim, Y. H. Kim, H. S. Yoon, H. A. Kim, J. S. Kim, J. Kim, N. H. Cho, Y. M. Kim and S. Lee: ACS Appl. Mater. Interfaces, 11 (2019) 4017.   DOI