DOI QR코드

DOI QR Code

Synthesis of the Multi-layered SnO Nanoparticles and Enhanced Performance of Lithium-Ion Batteries by Heat treatment

다층 산화주석(SnO)의 합성 및 열처리를 통한 리튬이온 이차전지 음극 소재의 성능 향상

  • Lee, So Yi (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Myung, Yoon (Korea Institute of Industrial Technology, Dongnam Regional Division) ;
  • Lee, Kyu-Tae (Department of Physics, Inha University) ;
  • Choi, Jaewon (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University)
  • 이소이 (경상국립대학교 화학과) ;
  • 명윤 (한국생산기술연구원 동남본부) ;
  • 이규태 (인하대학교 물리학과) ;
  • 최재원 (경상국립대학교 화학과)
  • Received : 2021.11.02
  • Accepted : 2021.12.02
  • Published : 2021.12.28

Abstract

In this study, multilayered SnO nanoparticles are prepared using oleylamine as a surfactant at 165℃. The physical and chemical properties of the multilayered SnO nanoparticles are determined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Interestingly, when the multilayered SnO nanoparticles are heated at 400℃ under argon for 2 h, they become more efficient anode materials, maintaining their morphology. Heat treatment of the multilayered SnO nanoparticles results in enhanced discharge capacities of up to 584 mAh/g in 70 cycles and cycle stability. These materials exhibit better coulombic efficiencies. Therefore, we believe that the heat treatment of multilayered SnO nanoparticles is a suitable approach to enable their application as anode materials for lithium-ion batteries.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(NRF-2020R1F1A1072441, NRF-2021R1C1C10114 36). 본 과제(결과물)는 2020년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다. This study was supported by Korea Institute of Industrial Technology (JA210007).

References

  1. J. H. Shim, Y. H. Kim, H. S. Yoon, H. A. Kim, J. S. Kim, J. Kim, N. H. Cho, Y. M. Kim and S. Lee: ACS Appl. Mater. Interfaces, 11 (2019) 4017. https://doi.org/10.1021/acsami.8b19902
  2. F. Wang, B. Wang, T. Ruan, T. Gao, R. Song, F. Jin, Y. Zhou, D. Wang, H. Liu and S. Dou: ACS Nano, 13 (2019) 12219. https://doi.org/10.1021/acsnano.9b07241
  3. J. G. Han, K. Kim, Y. Lee and N. S. Choi: Adv. Mater., 31 (2019) 1804822. https://doi.org/10.1002/adma.201804822
  4. J. Zhang, Z. Ma, W. Jiang, Y. Zou, Y. Wang and C. Lu: J. Electroanal. Chem., 767 (2016) 49. https://doi.org/10.1016/j.jelechem.2016.01.043
  5. X. Li, X. Li, L. Fan, Z. Yu, B. Yan, D. Xiong, X. Song, S. Li, K. R. Adair, D. Li and X. Sun: Appl. Surf. Sci., 412 (2017) 170. https://doi.org/10.1016/j.apsusc.2017.03.203
  6. B. Xu, H. Shen, J. Ge and Q. Tang: Appl. Surf. Sci., 546 (2021) 148814. https://doi.org/10.1016/j.apsusc.2020.148814
  7. H. Zhang, G. Zhang, Z. Li, K. Qu, L. Wang, W. Zeng, Q. Zhang and H. Duan: J. Mater. Chem. A, 4 (2016) 10585. https://doi.org/10.1039/C6TA02875F
  8. L. Peng, P. Xiong, L. Ma, Y. Yuan, Y. Zhu, D. Chen, X. Luo, J. Lu, K. Amine and G. Yu: Nat. Commun., 8 (2017) 15139. https://doi.org/10.1038/ncomms15139
  9. W. Yue, S. Yang, Y. Ren and X. Yang: Electrochim. Acta, 92 (2013) 412. https://doi.org/10.1016/j.electacta.2013.01.058
  10. Chen, H. Qian, J. Xu, L. Qin, Q.-H. Wu, M. Zheng and Q. Dong: J. Mater. Chem. A, 2 (2014) 9345. https://doi.org/10.1039/c4ta01493f
  11. H. Zhang, X. Huang, O. Noonan, L. Zhou and C. Yu: Adv. Funct. Mater., 27 (2017) 1606023. https://doi.org/10.1002/adfm.201606023
  12. A. Shukla and N. K. Gaur: Chem. Phys. Lett., 754 (2020) 137717. https://doi.org/10.1016/j.cplett.2020.137717
  13. L. Liu, F. Xie, J. Lyu, T. Zhao, T. Li and B. G. Choi: J. Power Sources, 321 (2016) 11. https://doi.org/10.1016/j.jpowsour.2016.04.105
  14. D. Aurbach, A. Nimberger, B. Markovsky, E. Levi, E. Sominski and A. Gedanken: Chem. Mater., 14 (2002) 4155. https://doi.org/10.1021/cm021137m
  15. W. Jiang, W. Zeng, Z. Ma and Y. Pan: RSC Adv., 4 (2014) 41281. https://doi.org/10.1039/C4RA06968D
  16. X. T. Chen, K. X. Wang, Y. B. Zhai, H. J. Zhang, X. Y. Wu, X. Wei and J. S. Chen: Dalton Trans, 43 (2014) 3137. https://doi.org/10.1039/c3dt52661e
  17. J. H. Shin and J. Y. Song: Nano Converg., 3 (2016) 9. https://doi.org/10.1186/s40580-016-0070-1
  18. Y. Cheng, J. Huang, J. Li, L. Cao and H. Qi: Micro & Nano Lett., 13 (2018) 257. https://doi.org/10.1049/mnl.2017.0550
  19. J. Zeng, C. Peng, R. Wang, Y. Liu, C. Cao, X. Wang and J. Liu: Ceram. Int., 45 (2019) 19404. https://doi.org/10.1016/j.ceramint.2019.06.193
  20. Q. Ren, X. Zhang, Y. Wang, M. Xu, J. Wang, Q. Tian, K. Jia, X. Liu, Y. Sui, C. Liu, J. Yun, J. Yan, W. Zhao and Z. Zhang: Sens. Actuators. B, 340 (2021) 129940. https://doi.org/10.1016/j.snb.2021.129940
  21. K. H. Park, J. Choi, H. J. Kim, J. B. Lee and S. U. Son: Chem. Mater., 19 (2007) 3861. https://doi.org/10.1021/cm0712772
  22. J. Choi, N. Kang, H. Y. Yang, H. J. Kim and S. U. Son: Chem. Mater., 22 (2010) 3586. https://doi.org/10.1021/cm100902f
  23. J. Choi, J. Jin, J. Lee, J. H. Park, H. J. Kim, D.-H. Oh, J. R. Ahn and S. U. Son: J. Mater. Chem., 22 (2012) 11107. https://doi.org/10.1039/c2jm30949a
  24. W. Li, A. Sasaki, H. Oozu, K. Aoki, K. Kakushima, Y. Kataoka, A. Nishiyama, N. Sugii, H. Wakabayashi, K. Tsutsui, K. Natori and H. Iwai: Microelectron Reliab, 55 (2015) 402. https://doi.org/10.1016/j.microrel.2014.11.002
  25. F. Li, E. Shangguan, J. Li, L. Li, J. Yang, Z. Chang, Q. Li, X.-Z. Yuan and H. Wang: Electrochim. Acta, 178 (2015) 34. https://doi.org/10.1016/j.electacta.2015.07.106
  26. J. Zeng, C. Peng, R. Wang, Y. Liu, X. Wang and J. Liu: Ceram. Int., 45 (2019) 1246. https://doi.org/10.1016/j.ceramint.2018.10.006
  27. Q. Zhao, Y. Tong, Y. Liu and Z. Mingzhe: Ceram. Int., 45 (2019) 17529. https://doi.org/10.1016/j.ceramint.2019.05.315
  28. L. Meng, W. Bu, Y. Li, Q. Qin, Z. Zhou, C. Hu, X. Chuai, C. Wang, P. Sun and G. Lu: Sens. Actuators. B, 342 (2021) 130018. https://doi.org/10.1016/j.snb.2021.130018
  29. Y. Zhang, Z. Ma, D. Liu, S. Dou, J. Ma, M. Zhang, Z. Guo, R. Chen and S. Wang: J. Mater. Chem. A, 5 (2017) 512. https://doi.org/10.1039/C6TA09748K
  30. P. T. Hung, P. D. Hoat, V. X. Hien, H. Y. Lee, S. Lee, J. H. Lee, J. J. Kim and Y. W. Heo: ACS Appl. Mater. Interfaces, 12 (2020) 34274. https://doi.org/10.1021/acsami.0c04974
  31. Y. Hu, K. Xu, L. Kong, H. Jiang, L. Zhang and C. Li: Chem. Eng. J., 242 (2014) 220. https://doi.org/10.1016/j.cej.2013.09.054
  32. L. Li, C. Zhang and W. Chen: Nanoscale, 7 (2015) 12133. https://doi.org/10.1039/c5nr02334c