• 제목/요약/키워드: anisotropy of strength

검색결과 205건 처리시간 0.025초

섬유배향과 섬유함유량이 섬유강화 열가소성수지 복합재료의 인장강도에 미치는 영향 (Effect of Fiber Orientation and Fiber Contents on the Tensile Strength in Fiber-reinforced Thermoplastic Composites)

  • 김진우;이동기
    • Composites Research
    • /
    • 제20권5호
    • /
    • pp.13-19
    • /
    • 2007
  • 섬유강화 열가소성수지 복합재료는 열경화성수지 복합재료의 강도 수준에 근접할 뿐만 아니라 열경화성수지 복합재료의 취약점으로 지적되고 있는 생산성, 리사이클, 내충격성 등이 우수하다. 일방향 섬유강화 복합재료의 강도계산을 위한 연구와 섬유배향상태를 측정하여 정량적으로 나타낼 수 있도록 연구하여 발표하였으나, 섬유함유율에 따른 섬유배향상태와 복합재료의 기계적 성질을 예측을 할 수 있는 데이터베이스 구축은 되어있지 않으므로 이에 대한 체계적인 연구가 필요하다 본 연구에서는 섬유함유율에 따른 섬유배향상태를 변화시켜 섬유강화 열가소성수지 복합판재를 제작한 후, 섬유함유율 및 섬유배향상태가 복합판재의 인장강도에 어떠한 영향을 주는지에 대해서 고찰하였다. 섬유강화 열경화성수지 복합재료의 $0^{\circ}$ 방향에서 인장강도 비는 등방성에서 이방성으로 갈수록 섬유배향함수와 섬유함유율에 관계없이 일정하게 나타났으나, $90^{\circ}$ 방향에서 인장강도 비는 인장 하중이 강화섬유 길이방향의 수직방향으로 작용했을 때 섬유필라멘트 분리에 의해 감소하였다.

Fabrication and magnetic properties of hexagonal BaFe12O19 ferrite obtained by magnetic-field-assisted hydrothermal process

  • Zhang, Min;Dai, Jianming;Liu, Qiangchun;Li, Qiang;Zi, Zhenfa
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1426-1430
    • /
    • 2018
  • High magnetic field effects on the microstructure and magnetic properties of $BaFe_{12}O_{19}$ hexaferrites synthesized hydrothermal method have been investigated. The obtained results indicate that the lattice constant decreases gradually as the magnetic field strength increases, which may be attributed to the lattice distortion resulted from the high magnetic field. Polycrystalline $BaFe_{12}O_{19}$ samples prepared under magnetic field strength at zero and 5 T are single phase. It is found that application of external magnetic field during synthesis can induce orientated growth of the hexaferrite crystals along the easy magnetic axis. The magnetic properties can be effectively regulated by an application of high magnetic fields. It is observed that the $BaFe_{12}O_{19}$ prepared under a 5 T magnetic field exhibits a higher room-temperature saturation magnetization (66.3 emu/g) than that of the sample (43.6 emu/g) obtained without magnetic field. The results can be explained as the enhanced crystalline, improvement of $Fe^{3+}$ ions occupancy and the oriented growth induced by the external magnetic field. The growing orientation of particles gives rise to increased coercivity due to the enhancement in shape anisotropy. It is expected that an application of magnetic field during the formation of magnetic nanoparticles could be a promising technique to modify magnetic properties with excellent performance.

좁은 Channel에서의 자기적 Creep (Magnetic Creep in Narrow Channel)

  • 박영문
    • 전기의세계
    • /
    • 제23권2호
    • /
    • pp.55-61
    • /
    • 1974
  • Nature of magnetic creep phenomena in low coercive force films(Ni 80%-Fe 20%) in form of narrow channels imbedded in high coercive force films is studied in this work. Aluminium is evaporated on the hot glass substrate and eched free in the shape of narrow channels by photoetoetching method. then, Permalloy(Ni 80%, Fe 20%) is deposited on these Aluminium substrate under the uniform field of 30(Oe) to introduce anisotropy. Permalloy film on Al has a high coercive force and one on the substrate devoid of Al has how coercive force. Magnetic revers domain which is introduced at the end of channel grows under the a.c field in hard axis direction, in spite of very weak d.c field in easy axis direction. This creeping is investigated as a function of external fields and channel widths. Permalloy film thickness is 500.angs.-900.angs. and channel widths are 40, 51, 65, 81, 115.mu. respectively. Creeping increases as external field increases while it decreases with channel width decrease. Creep velocity in channels depends on the a.c field along hard axis, d.c field along easy axis and channel widths and its range is 1-10cm/sec in this experiment. From study of dependence of creep velocity on channel width, it can be concluded that creep velocity is expressed in form of v=v$_{0}$ exp .alpha.(H-H$_{0}$) where .alpha. is a function of a.c field along hard axis and H is driving d.c field along easy axis, H$_{0}$ is not a coercive force of film as usuall expected but the d.c threshold field along easy axis which is a function of channel width. This characteristic is also confirmed by the study of dependence of creep velocity upon easy axis field strength. Value of .alpha. obtained is 1.3-2.3cm/sec We depending upon film charactor, hard axis field strength and frequency.uency.

  • PDF

인산형 연료전지 분리판용 천연흑연-불소수지계 복합재료의 흑연입도에 따른 전기비저항 변화 (Electrical Resistivity of Natural Graphite-Fluorine Resin Composite for Bipolar Plates of Phosphoric Acid Fuel Cell(PAFC) Depending on Graphite Particle Size)

  • 이상민;백운경;김태진;노재승
    • 한국재료학회지
    • /
    • 제27권12호
    • /
    • pp.664-671
    • /
    • 2017
  • A composite material was prepared for the bipolar plates of phosphoric acid fuel cells(PAFC) by hot pressing a flake type natural graphite powder as a filler material and a fluorine resin as a binder. Average particle sizes of the powders were 610.3, 401.6, 99.5, and $37.7{\mu}m$. The density of the composite increased from 2.25 to $2.72g/cm^3$ as the graphite size increased from 37.7 to $610.3{\mu}m$. The anisotropy ratio of the composite increased from 1.8 to 490.9 as the graphite size increased. The flexural strength of the composite decreased from 15.60 to 8.94MPa as the graphite size increased. The porosity and the resistivity of the composite showed the same tendencies, and decreased as the graphite size increased. The lowest resistivity and porosity of the composite were $1.99{\times}10^{-3}{\Omega}cm$ and 2.02 %, respectively, when the graphite size was $401.6{\mu}m$. The flexural strength of the composite was 10.3MPa when the graphite size was $401.6{\mu}m$. The lowest resistance to electron mobility was well correlated with the composite with lowest porosity. It was possible the flaky large graphite particles survive after the hot pressing process.

다양한 기하학적 형상을 갖는 복합 적층쉘 구조의 유한차분해석 (Finite Difference Analysis of Laminated Composite Shell Structures with Various Geometrical Shapes)

  • 박해길;이상열;장석윤
    • 복합신소재구조학회 논문집
    • /
    • 제1권3호
    • /
    • pp.24-34
    • /
    • 2010
  • 본 논문은 전단변형효과를 고려한 복합신소재 적층 쉘을 해석하기 위하여, 일반 쉘의 지배방정식을 유도하고, 이 방정식을 풀기 위하여 수치해석 기법중 하나인 유한차분법을 수행하였다. 유한차분법을 미분방정식을 지배방정식으로 가지는 구조물 해석시 간편하게 사용될 수 있고, 오차의 범위를 선택적으로 정할수 있는 장점이 있다. 수치해석 결과의 타당성을 검증하기 위하여 수렴도 분석과 범용 구조해석 프로그램인 LUSAS의 해석결과와 비교하였다. 본 논문의 목적은 전단변형 효과를 고려한 일반 쉘의 거동 특징 및 분석, 복합재료로 구성되었을 경우 정확한 거동을 분석하고, 쉘 구조물이 보다 높은 강성을 가질 수 있도록 하는 적절한 화이버의 보강방안과 다양한 조건 변화를 통해서 최적의 쉘 구조물을 제시하는 것이다. 쉘의 곡률의 변화에 따른 거동과 합응력의 변화를 분석하고, 쉘의 높이-너비 비와 화이버 보강각도 변화에 따른 처짐 및 합응력의 변화를 비교, 분석하여 보다 유리한 쉘 구조물을 제시하였다. 또한 다양한 하중을 가하여 쉘의 형상 변화를 비교 분석함으로서 비등방성 재료로 이루어진 일반 쉘의 거동에 대하여 분석하였다.

  • PDF

ECAP공법으로 제조된 무산소동의 미세조직 및 기계적 성질 이방성에 대한 고찰 (A Study on the Microstructure and Anisotropic Mechanical Properties of Oxygen-Free Copper Fabricated by Equal Channel Angular Pressing)

  • 이재근;홍영곤;김형섭;박성혁
    • 한국군사과학기술학회지
    • /
    • 제22권4호
    • /
    • pp.492-500
    • /
    • 2019
  • Equal channel angular pressing(ECAP) is a severe plastic deformation technique capable of introducing large shear strain in bulk metal materials. However, if an ECAPed material has an inhomogeneous microstructure and anisotropic mechanical properties, this material is difficult to apply as structural components subjected to multi-axial stress during use. In this study, extruded oxygen-free copper(OFC) rods with a large diameter of 42 mm are extruded through ECAP by route Bc up to 12 passes. The variations in the microstructure, hardness, tensile properties, and microstructural and mechanical homogeneity of the ECAPed samples are systematically analyzed. High-strength OFC rods with a homogeneous and equiaxed-ultrafine grain structure are obtained by the repeated application of ECAP up to 8 and 12 passes. ECAPed samples with 4 and 8 passes exhibit much smaller differences in terms of the average grain sizes on the cross-sectional area and the tensile strengths along the axial and circumferential directions, as compared to the samples with 1 and 2 passes. Therefore, it is considered that the OFC materials, which are fabricated via the ECAP process with pass numbers of a multiple of 4, are suitable to be applied as high-strength structural parts used under multi-axial stress conditions.

Effect of Proton Irradiation on the Magnetic Properties of Antiferromagnet/ferromagnet Structures

  • Kim, Dong-Jun;Park, Jin-Seok;Ryu, Ho Jin;Jeong, Jong-Ryul;Chung, Chang-Kyu;Park, Byong-Guk
    • Journal of Magnetics
    • /
    • 제21권2호
    • /
    • pp.159-163
    • /
    • 2016
  • Antiferromagnet (AFM)/ferromagnet (FM) bilayer structures are widely used in the magnetic devices of sensor and memory applications, as AFM materials can induce unidirectional anisotropy of the FM material via exchange coupling. The strength of the exchange coupling is known to be sensitive to quality of the interface of the AFM/FM bilayers. In this study, we utilize proton irradiation to modify the interface structures and investigate its effect on the magnetic properties of AFM/FM structures, including the exchange bias and magnetic thermoelectric effect. The magnetic properties of IrMn/CoFeB structures with various IrMn thicknesses are characterized after they are exposed to a proton beam of 3 MeV and $1{\sim}5{\times}10^{14}ions/cm^2$. We observe that the magnetic moment is gradually reduced as the amount of the dose is increased. On the other hand, the exchange bias field and thermoelectric voltage are not significantly affected by proton irradiation. This indicates that proton irradiation has more of an influence on the bulk property of the FM CoFeB layer and less of an effect on the IrMn/CoFeB interface.

직교 절삭 기반 탄소섬유복합재 가공특성 관련 연구 (Evaluation of Machining Characteristics of the Carbon Fiber Reinforced Plastic (CFRP) Composite by the Orthogonal Cutting)

  • 김영빈;김민지;박형욱
    • 한국정밀공학회지
    • /
    • 제33권6호
    • /
    • pp.439-445
    • /
    • 2016
  • Carbon fiber reinforced plastic (CFRP) composites have been widely used due to their great strength, stiffness and light weight. However, due to its anisotropy and inhomogeneous properties the machining process of CFRP composites is typically more complex than that of regular metals. Since there are many defects, such as delamination and tool wear during the machining process of CFRP composites, the optimization of this process is essential in improving the productivity. In this study, orthogonal machining of CFRP composites was performed to identify the machining characteristics of these materials. In addition, an experimental observation of delamination was investigated through the use of scanning electron microscopy (SEM). In these experiments, the cutting forces were measured and analyzed to determine the difference between machining of CFRP composites and metals. The comparison between the numerical models and experimental results was performed in terms of the maximum cutting forces.

원통형 이종 접합 소재의 $SiO_2/Ag$스퍼터 증착과 온도 변화에 따른 기계적 특성에 관한 연구 (The Study on the Improvement of Mechanical Performance due to Change in Temperature and Sputtering by $SiO_2/Ag$ Material of Bonded Dissimilar Materials with Cylindrical Shape)

  • 이승현;최성대;이종형
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.138-145
    • /
    • 2012
  • The material used in this study is dielectric and ferrite. Because of the unique characteristics of the material, it is easily exposed to external shocks and pressure, which cause damage to the product. However, after being processed under high-temperature environment repeatedly, the mechanical strength of the product is greatly increased due to the change of the electrical properties. In this paper, dielectric and bonded ferrite material was tested for the material properties. The equipment for this experiment was produced and tested to allow Cylindrical and Three-dimensional geometry of the product for the vacuum deposition. For Cylindrical shape of the product, in order to obtain the equivalent film thickness, the device is constructed in a vacuum chamber which gives arbitrary revolving and rotating capability. The electrical performance of the product is obtained through this process as well. However, as mentioned above, with repeating processes under high temperature and exposure to external environment, the product is easy to be broken. This experiment has enabled us to find out a stable condition to apply the communication of the RF high frequency to each of the core elements, such as Ferrite and Dielectric which is then used for the mechanical strength of the Raw material, hetero-junction material, Hetero-junction Ag Coating material and hetero-junction Ag Coating SiO2 Coating material respectively.

Observation of the Domain Structures in Soft Magnetic (Fe97A13)85N15/Al2O3 Multilayers

  • Stobiecki, T.;Zoladz, M.
    • Journal of Magnetics
    • /
    • 제8권1호
    • /
    • pp.13-17
    • /
    • 2003
  • The longitudinal magnetooptical Kerr effect was used to analyse magnetic domains in soft magnetic ${(Fe_{97}A1_3)}_{85}N_{15}$/$Al_{2}O_{3}$ multilayers in order to get microscopic understanding of interlayer exchange coupling. The measuring system consists of a Kerr microscope, a CCIR camera (with an 8-bit framegrabber), 16 bit digital camera and computer system for real-time image processing and to control external magnetic field and cameras. The strength of ferromagnetic (EM) coupling as a function of the spacer thickness of $Al_2O_3$ was investigated. It was found that strong FM-coupling, strong uniaxial anisotropy and coherent rotation of the magnetization have been observed for the spacer thickness in the range of 0.2 nm $\leq$ t $\leq$ 1 m, however, weak FM-coupling, patch domains and $360^{\circ}$-walls occur for the spacer thickness of t = 2.5 nm. At a spacer thickness of t $\geq$ 5 nm transition takes place from weak FM-coupling to the decoupled state where complex interlayer interactions and different types of the domain walls were observed.