DOI QR코드

DOI QR Code

Fabrication and magnetic properties of hexagonal BaFe12O19 ferrite obtained by magnetic-field-assisted hydrothermal process

  • Zhang, Min (School of Physics and Electronics Information, Huaibei Normal University) ;
  • Dai, Jianming (Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences) ;
  • Liu, Qiangchun (School of Physics and Electronics Information, Huaibei Normal University) ;
  • Li, Qiang (School of Physics and Electronics Information, Huaibei Normal University) ;
  • Zi, Zhenfa (Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences)
  • Received : 2018.05.21
  • Accepted : 2018.08.13
  • Published : 2018.11.30

Abstract

High magnetic field effects on the microstructure and magnetic properties of $BaFe_{12}O_{19}$ hexaferrites synthesized hydrothermal method have been investigated. The obtained results indicate that the lattice constant decreases gradually as the magnetic field strength increases, which may be attributed to the lattice distortion resulted from the high magnetic field. Polycrystalline $BaFe_{12}O_{19}$ samples prepared under magnetic field strength at zero and 5 T are single phase. It is found that application of external magnetic field during synthesis can induce orientated growth of the hexaferrite crystals along the easy magnetic axis. The magnetic properties can be effectively regulated by an application of high magnetic fields. It is observed that the $BaFe_{12}O_{19}$ prepared under a 5 T magnetic field exhibits a higher room-temperature saturation magnetization (66.3 emu/g) than that of the sample (43.6 emu/g) obtained without magnetic field. The results can be explained as the enhanced crystalline, improvement of $Fe^{3+}$ ions occupancy and the oriented growth induced by the external magnetic field. The growing orientation of particles gives rise to increased coercivity due to the enhancement in shape anisotropy. It is expected that an application of magnetic field during the formation of magnetic nanoparticles could be a promising technique to modify magnetic properties with excellent performance.

Keywords

Acknowledgement

Supported by : National Nature Science Foundation of China, Foundation of Educational Commission of Anhui Province

References

  1. R.C. Pullar, Prog. Mater. Sci. 57 (2012) 1191-1334. https://doi.org/10.1016/j.pmatsci.2012.04.001
  2. G.H. Mu, N. Chen, X.F. Pan, K. Yang, M.Y. Gu, Appl. Phys. Lett. 91 (2007) 043110. https://doi.org/10.1063/1.2764440
  3. Y. Li, A.L. Xia, C.G. Jin, J. Mater. Sci. Mater. El. 27 (2016) 10864-10868. https://doi.org/10.1007/s10854-016-5195-9
  4. R. Topkaya, J. Alloys Compd. 725 (2017) 1230-1237. https://doi.org/10.1016/j.jallcom.2017.07.248
  5. P. Kumar, A. Gaur, R.K. Kotnala, Ceram. Int. 43 (2017) 1180-1185. https://doi.org/10.1016/j.ceramint.2016.10.060
  6. C. Sun, K.N. Sun, P.F. Chui, J. Magn. Magn. Mater. 324 (2012) 802-805. https://doi.org/10.1016/j.jmmm.2011.09.023
  7. G.V. Duong, R. Sato Turtelli, B.D. Thuan, D.V. Linh, N. Hanh, R. Groessinger, J. Non-Cryst. Solids 353 (2007) 811-813. https://doi.org/10.1016/j.jnoncrysol.2006.12.047
  8. S. Che, J. Wang, Q.W. Chen, J. Phys. Condens. Matter 15 (2003) L335-L339. https://doi.org/10.1088/0953-8984/15/22/101
  9. M. Drofenik, I. Ban, D. Makovec, A. Znidarsic, Z. Jaglicic, D. Hanzel, D. Lisjak, Mater. Chem. Phys. 127 (2011) 415-419. https://doi.org/10.1016/j.matchemphys.2011.02.037
  10. L. Du, Y.C. Du, Y. Li, J.Y. Wang, C. Wang, X.H. Wang, P. Xu, X.J. Han, J. Phys. Chem. C 114 (2010) 19600-19606. https://doi.org/10.1021/jp1067268
  11. J. Wang, Q.W. Chen, S. Che, J. Magn. Magn. Mater. 280 (2004) 281-286. https://doi.org/10.1016/j.jmmm.2004.03.045
  12. H. Sozeri, J. Alloys Compd. 486 (2009) 809-814. https://doi.org/10.1016/j.jallcom.2009.07.072
  13. V.K. Sankaranarayanan, Q.A. Pankhurst, D.P.E. Dickson, C.E. Johnson, J. Magn. Magn. Mater. 125 (1993) 199-208. https://doi.org/10.1016/0304-8853(93)90838-S
  14. M.M. Rashad, I.A. Ibrahim, J. Mater. Sci. Mater. El. 22 (2011) 1796-1803. https://doi.org/10.1007/s10854-011-0365-2
  15. Ashima, S. Sanghi, A. Agarwal, Reetu, N. Ahlawat, Monica, J. Appl. Phys. 112 (2012) 014110. https://doi.org/10.1063/1.4734002
  16. S. Ounnunkad, Solid State Commun. 138 (2006) 472-475. https://doi.org/10.1016/j.ssc.2006.03.020
  17. Z.F. Zi, Q.C. Liu, J.M. Dai, Y.P. Sun, Solid State Commun. 152 (2012) 894-897. https://doi.org/10.1016/j.ssc.2012.02.007
  18. G.J. Li, M.M. Li, J.H. Wang, J.J. Du, K. Wang, Q. Wang, J. Magn. Magn. Mater. 423 (2017) 353-358. https://doi.org/10.1016/j.jmmm.2016.09.113
  19. J. Wang, Q.W. Chen, C. Zeng, B. Hou, Adv. Mater. 16 (2004) 137-140. https://doi.org/10.1002/adma.200306136
  20. X. Li, Y. Fautrelle, Z.M. Ren, Y.D. Zhang, C. Esling, Acta Mater. 58 (2010) 2430-2441. https://doi.org/10.1016/j.actamat.2009.12.029
  21. L. Hu, R.R. Zhang, Q.W. Chen, Nanoscale 6 (2014) 14064-14105. https://doi.org/10.1039/C4NR05108D
  22. N.S. Gajbhiye, S. Srivastava, S. Kurian, B.R. Behta, V.N. Singh, J. Phys. Conf. Ser. 200 (2010) 072093. https://doi.org/10.1088/1742-6596/200/7/072093
  23. V. Annapureddy, J.-H. Kang, H. Palneedi, J.-W. Kim, C.-W. Ahn, S.-Y. Choi, S.D. Johnson, J. Ryu, J. Eur. Ceram. Soc. 37 (2017) 4701-4706. https://doi.org/10.1016/j.jeurceramsoc.2017.05.028
  24. X.W. Tang, L.H. Jin, J.M. Dai, X.B. Zhu, Y.P. Sun, J. Alloys Compd. 695 (2017) 2458-2463. https://doi.org/10.1016/j.jallcom.2016.11.144
  25. J.L. Liu, Y.W. Zeng, X.D. Sheng, C.J. Guo, W. Zhang, J. Cryst. Growth 311 (2009) 2363-2366. https://doi.org/10.1016/j.jcrysgro.2008.12.058
  26. L. Affleck, M.D. Aguas, Q.A. Pankhurst, I.P. Parkin, W.A. Steer, Adv. Mater. 12 (2000) 1359-1362. https://doi.org/10.1002/1521-4095(200009)12:18<1359::AID-ADMA1359>3.0.CO;2-P
  27. J. Wang, K. Zhang, Z.M. Peng, Q.W. Chen, J. Cryst. Growth 266 (2004) 500-504. https://doi.org/10.1016/j.jcrysgro.2004.03.034
  28. F. Zhang, S.-W. Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson, I.P. Herman, Appl. Phys. Lett. 80 (2002) 127-129. https://doi.org/10.1063/1.1430502
  29. N.A. Putri, V. Fauzia, S. Iwan, L. Roza, A.A. Umar, S. Budi, Appl. Surf. Sci. 439 (2018) 285-297. https://doi.org/10.1016/j.apsusc.2017.12.246
  30. S. Sonmezoglu, E. Akman, Appl. Surf. Sci. 318 (2014) 319-323. https://doi.org/10.1016/j.apsusc.2014.06.187
  31. X.Y. Liu, J. Wang, L.-M. Gan, S.-C. Ng, J. Magn. Magn. Mater. 195 (1999) 452-459. https://doi.org/10.1016/S0304-8853(99)00123-7
  32. M. Zhang, Z.F. Zi, Q.C. Liu, X.B. Zhu, C.H. Liang, Y.P. Sun, J.M. Dai, J. Magn. Magn. Mater. 369 (2014) 23-26.
  33. M.S. Chen, Z.X. Shen, X.Y. Liu, J. Wang, J. Mater. Res. 15 (2000) 483-487. https://doi.org/10.1557/JMR.2000.0072
  34. J. Wang, Y.J. Wu, Y.J. Zhu, Mater. Chem. Phys. 106 (2007) 1-4. https://doi.org/10.1016/j.matchemphys.2007.04.061
  35. X. Wang, H.B. Fu, A.D. Peng, T.Y. Zhai, Y. Ma, F.L. Yuan, J.N. Yao, Adv. Mater. 21 (2009) 1636-1640. https://doi.org/10.1002/adma.200801309

Cited by

  1. Phase evolution and temperature dependent magnetic properties of nanocrystalline barium hexaferrite vol.30, pp.14, 2018, https://doi.org/10.1007/s10854-019-01734-x