Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.12.664

Electrical Resistivity of Natural Graphite-Fluorine Resin Composite for Bipolar Plates of Phosphoric Acid Fuel Cell(PAFC) Depending on Graphite Particle Size  

Lee, Sang-Min (School of Materials Science and Engineering, Kumoh National Institute of Technology)
Beak, Un-Gyeong (School of Materials Science and Engineering, Kumoh National Institute of Technology)
Kim, Tae-Jin (Gyeongbuk Institute For Regional Program Evaluation)
Roh, Jae-Seung (School of Materials Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Korean Journal of Materials Research / v.27, no.12, 2017 , pp. 664-671 More about this Journal
Abstract
A composite material was prepared for the bipolar plates of phosphoric acid fuel cells(PAFC) by hot pressing a flake type natural graphite powder as a filler material and a fluorine resin as a binder. Average particle sizes of the powders were 610.3, 401.6, 99.5, and $37.7{\mu}m$. The density of the composite increased from 2.25 to $2.72g/cm^3$ as the graphite size increased from 37.7 to $610.3{\mu}m$. The anisotropy ratio of the composite increased from 1.8 to 490.9 as the graphite size increased. The flexural strength of the composite decreased from 15.60 to 8.94MPa as the graphite size increased. The porosity and the resistivity of the composite showed the same tendencies, and decreased as the graphite size increased. The lowest resistivity and porosity of the composite were $1.99{\times}10^{-3}{\Omega}cm$ and 2.02 %, respectively, when the graphite size was $401.6{\mu}m$. The flexural strength of the composite was 10.3MPa when the graphite size was $401.6{\mu}m$. The lowest resistance to electron mobility was well correlated with the composite with lowest porosity. It was possible the flaky large graphite particles survive after the hot pressing process.
Keywords
phosphoric acid fuel cell(PAFC); bipolar plates; particle size; resistance; composite;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 E. R, Gonzalez and S. Snrivasan, J. Hydrogen Energy, 9, 215 (1984).   DOI
2 Y. W. Kim and J. S. LEE, J. Korean Ind. Eng. Chem., 3, 567 (1992).
3 J. Y. Lee, W. K. Lee, H. G. Rim, G. B. Joung, H. K. Lee, Trans. Korean Hydrogen New Energy Soc., 25, 131 (2014).   DOI
4 V. Mehta and J. S. Cooper, J. Power Sources, 114, 32 (2003).   DOI
5 S. I. Heo, J. C. Yun, C. K. Jung and K. S. Han, Proceeding of the KSCM Spring Annual Meeting, 147 (2004).
6 H. C. Kuan, C. C. M. Ma, K. H. Chen and S. M. Chen, J. Power Sources, 134, 7 (2004).   DOI
7 H. M. Kang, I. S. Han and C. Lim, J. Korean Soc. New and Renewable Energy, 3(4), 3 (2007).
8 K. M. Kang, S. H. Park, J. S. Kim, H. J. Ji and H. C. Ju, Trans. Korean Hydrogen and New Energy Soc., 23, 134 (2012).   DOI
9 B. Dhungana and Y. G. Son, J. Korea Academia-Industrial Cooper. Soc., 16, 3627 (2015).   DOI
10 J. Lee, Y. Jang, C. Hong, N. Kim, P. Li and H. Lee, J. Power Source, 193, 523 (2009).   DOI
11 K. Y. Cho, K. J. Kim and D. H. Riu, Carbon Lett., 7, 271 (2006).
12 A. Cao, C. Xu, J. Liang, D. Wu and B. Wei, Chem. Phys. Lett., 344, 13 (2001).   DOI
13 J. S. Roh, Carbon Lett., 5, 27 (2004).
14 M. S. Seehra, A. S. Pavlovic, V. S. Babu, J. W. Zondlo, P. G. Stanberry and A. H. Stiller, Carbon, 32, 431 (1994).   DOI
15 T. E. Weller, M. Ellerby, S. S. Saxena, R. P. Smith and N. T. Skipper, Nature Phys., 1, 39 (2005).   DOI
16 G. A. Slack, Phys. Review, 127, 694 (1962).   DOI
17 S. M. Lee, D. S. Kang, W. S. Kim and J. S. Roh, Carbon Lett., 15, 142 (2014).   DOI
18 P. H. Maheshwari, R. B. Mathur and T. L. Dhami, J. Power Sources, 173, 394 (2007).   DOI
19 D. Y. Han, E. S. Kim, S. H. Chi and Y. S. Lim, J. Korean Ceram. Soc., 43, 439 (2006).   DOI
20 S. I. Heo, J. C. Yun, K. S. Oh and K. S. Han, Adv. Composite Mater., 15, 115 (2006).   DOI
21 S. R. Dhakate, R. B. Mathur, S. Sharma, M. Borah and T. L. Dhami, Energy Fuels, 23, 934 (2009).   DOI
22 H. C. Kuan, C. C. M. Ma, K. H. Chen and S. M. Chen, J. Power Sources, 134, 7 (2004).   DOI