Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.08.010

Fabrication and magnetic properties of hexagonal BaFe12O19 ferrite obtained by magnetic-field-assisted hydrothermal process  

Zhang, Min (School of Physics and Electronics Information, Huaibei Normal University)
Dai, Jianming (Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences)
Liu, Qiangchun (School of Physics and Electronics Information, Huaibei Normal University)
Li, Qiang (School of Physics and Electronics Information, Huaibei Normal University)
Zi, Zhenfa (Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences)
Abstract
High magnetic field effects on the microstructure and magnetic properties of $BaFe_{12}O_{19}$ hexaferrites synthesized hydrothermal method have been investigated. The obtained results indicate that the lattice constant decreases gradually as the magnetic field strength increases, which may be attributed to the lattice distortion resulted from the high magnetic field. Polycrystalline $BaFe_{12}O_{19}$ samples prepared under magnetic field strength at zero and 5 T are single phase. It is found that application of external magnetic field during synthesis can induce orientated growth of the hexaferrite crystals along the easy magnetic axis. The magnetic properties can be effectively regulated by an application of high magnetic fields. It is observed that the $BaFe_{12}O_{19}$ prepared under a 5 T magnetic field exhibits a higher room-temperature saturation magnetization (66.3 emu/g) than that of the sample (43.6 emu/g) obtained without magnetic field. The results can be explained as the enhanced crystalline, improvement of $Fe^{3+}$ ions occupancy and the oriented growth induced by the external magnetic field. The growing orientation of particles gives rise to increased coercivity due to the enhancement in shape anisotropy. It is expected that an application of magnetic field during the formation of magnetic nanoparticles could be a promising technique to modify magnetic properties with excellent performance.
Keywords
M-type hexaferrite; High magnetic fields; Magnetic property;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Zhang, Z.F. Zi, Q.C. Liu, X.B. Zhu, C.H. Liang, Y.P. Sun, J.M. Dai, J. Magn. Magn. Mater. 369 (2014) 23-26.
2 M.S. Chen, Z.X. Shen, X.Y. Liu, J. Wang, J. Mater. Res. 15 (2000) 483-487.   DOI
3 R.C. Pullar, Prog. Mater. Sci. 57 (2012) 1191-1334.   DOI
4 G.H. Mu, N. Chen, X.F. Pan, K. Yang, M.Y. Gu, Appl. Phys. Lett. 91 (2007) 043110.   DOI
5 C. Sun, K.N. Sun, P.F. Chui, J. Magn. Magn. Mater. 324 (2012) 802-805.   DOI
6 J. Wang, Y.J. Wu, Y.J. Zhu, Mater. Chem. Phys. 106 (2007) 1-4.   DOI
7 X. Wang, H.B. Fu, A.D. Peng, T.Y. Zhai, Y. Ma, F.L. Yuan, J.N. Yao, Adv. Mater. 21 (2009) 1636-1640.   DOI
8 Y. Li, A.L. Xia, C.G. Jin, J. Mater. Sci. Mater. El. 27 (2016) 10864-10868.   DOI
9 R. Topkaya, J. Alloys Compd. 725 (2017) 1230-1237.   DOI
10 P. Kumar, A. Gaur, R.K. Kotnala, Ceram. Int. 43 (2017) 1180-1185.   DOI
11 G.V. Duong, R. Sato Turtelli, B.D. Thuan, D.V. Linh, N. Hanh, R. Groessinger, J. Non-Cryst. Solids 353 (2007) 811-813.   DOI
12 S. Che, J. Wang, Q.W. Chen, J. Phys. Condens. Matter 15 (2003) L335-L339.   DOI
13 M. Drofenik, I. Ban, D. Makovec, A. Znidarsic, Z. Jaglicic, D. Hanzel, D. Lisjak, Mater. Chem. Phys. 127 (2011) 415-419.   DOI
14 L. Du, Y.C. Du, Y. Li, J.Y. Wang, C. Wang, X.H. Wang, P. Xu, X.J. Han, J. Phys. Chem. C 114 (2010) 19600-19606.   DOI
15 J. Wang, Q.W. Chen, S. Che, J. Magn. Magn. Mater. 280 (2004) 281-286.   DOI
16 H. Sozeri, J. Alloys Compd. 486 (2009) 809-814.   DOI
17 V.K. Sankaranarayanan, Q.A. Pankhurst, D.P.E. Dickson, C.E. Johnson, J. Magn. Magn. Mater. 125 (1993) 199-208.   DOI
18 S. Ounnunkad, Solid State Commun. 138 (2006) 472-475.   DOI
19 M.M. Rashad, I.A. Ibrahim, J. Mater. Sci. Mater. El. 22 (2011) 1796-1803.   DOI
20 Ashima, S. Sanghi, A. Agarwal, Reetu, N. Ahlawat, Monica, J. Appl. Phys. 112 (2012) 014110.   DOI
21 Z.F. Zi, Q.C. Liu, J.M. Dai, Y.P. Sun, Solid State Commun. 152 (2012) 894-897.   DOI
22 L. Hu, R.R. Zhang, Q.W. Chen, Nanoscale 6 (2014) 14064-14105.   DOI
23 G.J. Li, M.M. Li, J.H. Wang, J.J. Du, K. Wang, Q. Wang, J. Magn. Magn. Mater. 423 (2017) 353-358.   DOI
24 J. Wang, Q.W. Chen, C. Zeng, B. Hou, Adv. Mater. 16 (2004) 137-140.   DOI
25 X. Li, Y. Fautrelle, Z.M. Ren, Y.D. Zhang, C. Esling, Acta Mater. 58 (2010) 2430-2441.   DOI
26 N.S. Gajbhiye, S. Srivastava, S. Kurian, B.R. Behta, V.N. Singh, J. Phys. Conf. Ser. 200 (2010) 072093.   DOI
27 V. Annapureddy, J.-H. Kang, H. Palneedi, J.-W. Kim, C.-W. Ahn, S.-Y. Choi, S.D. Johnson, J. Ryu, J. Eur. Ceram. Soc. 37 (2017) 4701-4706.   DOI
28 X.W. Tang, L.H. Jin, J.M. Dai, X.B. Zhu, Y.P. Sun, J. Alloys Compd. 695 (2017) 2458-2463.   DOI
29 J.L. Liu, Y.W. Zeng, X.D. Sheng, C.J. Guo, W. Zhang, J. Cryst. Growth 311 (2009) 2363-2366.   DOI
30 L. Affleck, M.D. Aguas, Q.A. Pankhurst, I.P. Parkin, W.A. Steer, Adv. Mater. 12 (2000) 1359-1362.   DOI
31 J. Wang, K. Zhang, Z.M. Peng, Q.W. Chen, J. Cryst. Growth 266 (2004) 500-504.   DOI
32 F. Zhang, S.-W. Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson, I.P. Herman, Appl. Phys. Lett. 80 (2002) 127-129.   DOI
33 N.A. Putri, V. Fauzia, S. Iwan, L. Roza, A.A. Umar, S. Budi, Appl. Surf. Sci. 439 (2018) 285-297.   DOI
34 S. Sonmezoglu, E. Akman, Appl. Surf. Sci. 318 (2014) 319-323.   DOI
35 X.Y. Liu, J. Wang, L.-M. Gan, S.-C. Ng, J. Magn. Magn. Mater. 195 (1999) 452-459.   DOI