• Title/Summary/Keyword: anisotropic equations

Search Result 132, Processing Time 0.028 seconds

Study on the Analysis of Anisotropic Laminated Cantilever Thin Plates and Anisotropic Laminated Cantilever Thick Plates (비등방성 적층 캔틸레버 박판 및 후판의 해석연구)

  • Park, Won-Tae
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.1-5
    • /
    • 2010
  • In this study, it is presented analysis results of bending problems in the anisotropic cantilever thick plates and the anisotropic laminated cantilever thin plates bending problems. Finite element method in this analysis was used. Both Kirchoff's assumptions and Mindlin assumptions are used as the basic governing equations of bending problems in the anisotropic laminated plates. The analysis results are compared between the anisotropic laminated cantilever thick plates and the anisotropic laminated cantilever thin plates for the variations of thickness-width ratios.

  • PDF

Determination of Elastic Constants of Transversely Isotropic Rocks (이방성 암석에 대한 탄성계수의 실험적 결정)

  • 김호영
    • Tunnel and Underground Space
    • /
    • v.5 no.4
    • /
    • pp.318-322
    • /
    • 1995
  • For transversely isotropic rocks such as schist, shale, etc, a method to determine the anisotropic elastic constants was proposed. Theoretically, equations of elastic constants E1, E2, and G2 can be derived from the measured strains in arbitrary three directions. If we attach three strain gages in accordance with the directons of anisotropy on the rock specimen under uni-axial compression, anisotropic elastic constants can be determined by these equations. With this method, the degree of anisotropy of transversely isotropic rocks will be easily evaluated by simple laboratory test.

  • PDF

Investigation of wave propagation in anisotropic plates via quasi 3D HSDT

  • Bouanati, Soumia;Benrahou, Kouider Halim;Atmane, Hassen Ait;Yahia, Sihame Ait;Bernard, Fabrice;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.85-96
    • /
    • 2019
  • A free vibration analysis and wave propagation of triclinic and orthotropic plate has been presented in this work using an efficient quasi 3D shear deformation theory. The novelty of this paper is to introducing this theory to minimize the number of unknowns which is three; instead four in other researches, to studying bulk waves in anisotropic plates, other than it can model plates with great thickness ratio, also. Another advantage of this theory is to permits us to show the effect of both bending and shear components and this is carried out by dividing the transverse displacement into the bending and shear parts. Hamilton's equations are a very potent formulation of the equations of analytic mechanics; it is used for the development of wave propagation equations in the anisotropic plates. The analytical dispersion relationship of this type of plate is obtained by solving an eigenvalue problem. The accuracy of the present model is verified by confronting our results with those available in open literature for anisotropic plates. Moreover Numerical examples are given to show the effects of wave number and thickness on free vibration and wave propagation in anisotropic plates.

HOMOGENIZATION FOR FISSURED MEDIUM EQUATIONS

  • Pak, Hee Chul
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.71-78
    • /
    • 2008
  • We introduce the homogenized differential systems for fissured medium equations representing the small temperature variation or densities of a fluid in a system consisting of two components.

  • PDF

Mixed Mode Analysis of Bonded Anisotropic Structures With a Crack (크랙 이 있는 異方性 接着構造物 의 혼합모우드 解析)

  • 홍창선;정광영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.2
    • /
    • pp.145-152
    • /
    • 1983
  • An adhesively bonded anisotropic structure containing a part-through crack subjected to in-plane mixed mode deformations is investigated. The problem is reduced to a pair of Fredholm integral equations of the second kind by mathematical analysis. By solving these equations numerically stress intensity factors k$_{1}$ and k$_{2}$ are presented. Two cases are considered with respect to fiber orientations. Case one is to fix the fiber orientations of sound plate bonded to cracked plate with various fiber orientations. The other is to vary fiber orientations for both plates. As boundary conditions, tension and shear loading respectively, are applied to bonded anisotropic plates to observe mixed mode deformations.

Eigenmode of Anisotropic Planar Waveguide

  • Kweon, Gyeong-Il;Hwang-bo, Seung;Kim, Cheol-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.137-146
    • /
    • 2004
  • A new method of obtaining the eigenmode of an anisotropic planar waveguide is studied. The planar waveguide can be composed of an arbitrary number of isotropic or uniaxially anisotropic layers, provided all the optical axes arc lying in the incidence plane. Since the equation of motion for the TE mode is not different from that for the TE mode in an isotropic planar waveguide, only the equation of motion for the TM mode is of any concern. For this kind of device structure, the Maxwell's equations can be solved for one component of the electric field and one component of the magnetic field. The resulting coupled set of equations is linear in the propagation constant and the eigenmode can be easily obtained using canned numerical routines.

Formulation and Identification of an Anisotropic Constitutive Model for Describing the Sintering of Stainless Steel Powder Compacts

  • Vagnon, Alexandre;Bouvardb, Didier.;Kapelskic, Georges
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.64-65
    • /
    • 2006
  • Anisotropic constitutive equations for sintering of metal powder compacts have been formulated from a linear viscous transversely-isotropic model in which an anisotropic sintering stress has been introduced to describe free sintering densification kinetics. The identification of material parameters defined in the model, has been achieved from thermomechanical experiments performed on 316L stainless steel warm-compacted powder in a dilatometer allowing controlled compressive loading.

  • PDF

INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN HETEROGENEOUS MEDIA

  • Pak, Hee Chul
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.335-347
    • /
    • 2006
  • The homogenization of non-stationary Navier-Stokes equations on anisotropic heterogeneous media is investigated. The effective coefficients of the homogenized equations are found. It is pointed out that the resulting homogenized limit systems are of the same form of non-stationary Navier-Stokes equations with suitable coefficients. Also, steady Stokes equations as cell problems are identified. A compactness theorem is proved in order to deal with time dependent homogenization problems.

  • PDF

A Study on the Effective Hydraulic Conductivity of an Anisotropic Porous Medium

  • Seong, Kwanjae
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.959-965
    • /
    • 2002
  • Effective hydraulic conductivity of a statistically anisotropic heterogeneous medium is obtained for steady two-dimensional flows employing stochastic analysis. Flow equations are solved up to second order and the effective conductivity is obtained in a semi-analytic form depending only on the spatial correlation function and the anisotropy ratio of the hydraulic conductivity field, hence becoming a true intrinsic property independent of the flow field. Results are obtained using a statistically anisotropic Gaussian correlation function where the anisotropy is defined as the ratio of integral scales normal and parallel to the mean flow direction. Second order results indicate that the effective conductivity of an anisotropic medium is greater than that of an isotropic one when the anisotropy ratio is less than one and vice versa. It is also found that the effective conductivity has upper and lower bounds of the arithmetic and the harmonic mean conductivities.

Nonlinear Anisotropic Hardening Laws for Orthotropic Fiber-Reinforced Composites (직교이방 섬유강화 복합재료의 비선형 비등방 경화법칙)

  • 김대용;이명규;정관수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.75-78
    • /
    • 2003
  • In order to describe the Bauschinger and transient behavior of orthotropic fiber-reinforced composites, a combined isotropic-kinematic hardening law based on the non-linear kinematic hardening rule was considered here, in particular, based on the Chaboche type law. In this modified constitutive law, the anisotropic evolution of the back-stress was properly accounted for. Also, to represent the orthotropy of composite materials, Hill's 1948 quadratic yield function and the orthotropic elasticity constitutive equations were utilized. Furthermore, the numerical formulation to update the stresses was also developed based on the incremental deformation theory for the boundary value problems. Numerical examples confirmed that the new law based on the anisotropic evolution of the back-stress complies well with the constitutive behavior of highly anisotropic materials such as fiber-reinforced composites.

  • PDF